Butterfly-Net: Optimal Function Representation Based on Convolutional Neural Networks

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

168
views
80
downloads

Abstract

Deep networks, especially Convolutional Neural Networks (CNNs), have been successfully applied in various areas of machine learning as well as to challenging problems in other scientific and engineering fields. This paper introduces Butterfly-Net, a low-complexity CNN with structured hard-coded weights and sparse across-channel connections, which aims at an optimal hierarchical function representation of the input signal. Theoretical analysis of the approximation power of Butterfly-Net to the Fourier representation of input data shows that the error decays exponentially as the depth increases. Due to the ability of Butterfly-Net to approximate Fourier and local Fourier transforms, the result can be used for approximation upper bound for CNNs in a large class of problems. The analysis results are validated in numerical experiments on the approximation of a 1D Fourier kernel and of solving a 2D Poisson's equation.

Department

Description

Provenance

Citation

Scholars@Duke

Cheng

Xiuyuan Cheng

Associate Professor of Mathematics

As an applied analyst, I develop theoretical and computational techniques to solve problems in high-dimensional statistics, signal processing and machine learning.

Lu

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.