Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Loading...
Thumbnail Image

Date

2012-10

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

319
views
539
downloads

Citation Stats

Abstract

Linear wave propagation through inhomogeneous structures of size R≫λ (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/λ. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the discretized problem is block-diagonal. A particular scenario is the case of a cylindrically-symmetric geometry, where an appropriate basis is the set of cylindrical waves with all possible azimuthal numbers (m). Each of the excited cylindrical harmonics propagate through the structure independently of all other harmonics, and therefore the fields associated with that harmonic can be found by solving an essentially two-dimensional PDE problem in the ρ-z (half)-plane. The cylindrical waves have a prescribed dependence on the azimuthal angle variable (φ), hence the name – 2.5D electromagnetics. This novel approach is applied to the problem of cloaking and wave scattering off a spherical nanoparticle on metallic and/or dielectric substrates.

Department

Description

Provenance

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.