APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1.

Abstract

Carrying the ε4 allele of the APOE gene encoding apolipoprotein E (APOE4) markedly increases the risk for late-onset Alzheimer's disease (AD), in which APOE4 exacerbates the brain accumulation and subsequent deposition of amyloid-β (Aβ) peptides. While the LDL receptor-related protein 1 (LRP1) is a major apoE receptor in the brain, we found that its levels are associated with those of insoluble Aβ depending on APOE genotype status in postmortem AD brains. Thus, to determine the functional interaction of apoE4 and LRP1 in brain Aβ metabolism, we crossed neuronal LRP1-knockout mice with amyloid model APP/PS1 mice and APOE3-targeted replacement (APO3-TR) or APOE4-TR mice. Consistent with previous findings, mice expressing apoE4 had increased Aβ deposition and insoluble amounts of Aβ40 and Aβ42 in the hippocampus of APP/PS1 mice compared with those expressing apoE3. Intriguingly, such effects were reversed in the absence of neuronal LRP1. Neuronal LRP1 deficiency also increased detergent-soluble apoE4 levels, which may contribute to the inhibition of Aβ deposition. Together, our results suggest that apoE4 exacerbates Aβ pathology through a mechanism that depends on neuronal LRP1. A better understanding of apoE isoform-specific interaction with their metabolic receptor LRP1 on Aβ metabolism is crucial for defining APOE4-related risk for AD.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1172/jci124853

Publication Info

Tachibana, Masaya, Marie-Louise Holm, Chia-Chen Liu, Mitsuru Shinohara, Tomonori Aikawa, Hiroshi Oue, Yu Yamazaki, Yuka A Martens, et al. (2019). APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1. The Journal of clinical investigation. 10.1172/jci124853 Retrieved from https://hdl.handle.net/10161/18111.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sullivan

Patrick Sullivan

Associate Professor Emeritus of Medicine

The primary focus of my lab is to investigate the relationship between APOE genotype and late onset Alzheimer’s disease (AD).  The single most common and influential gene in AD is the APOE gene.  The APOE gene is polymorphic; encoding three different alleles designated APOE2, E3 or E4.  APOE4 carriers have the highest risk for AD while APOE3 carriers have an essentially neutral risk and APOE2 carriers may be protected against AD.  The APOE4 gene is also linked to increased risk for atherosclerosis, cerebral amyloid angiopathy, peripheral neuropathy, multiple sclerosis, stroke and type II diabetes; as well as an increased susceptibility to HIV and Chlamydia infections, head injury and cognitive decline following coronary bypass surgery.  The fact that 28% of the US population are carriers of the APOE4 gene, underscores the need for a better understanding of APOE’s relationship to disease.  The major challenge facing researchers today is determining why some APOE4 carriers succumb to disease while others do not.  Genetic modifiers and environmental risk factors likely explain different individual outcomes. The primary environmental risk factors are thought to be; a Westernized diet, low physical activity, chronic stress, poor sleep habits, andro/menopause and most importantly, age.

We are currently working to test novel drug formulations that specifically target putative apoE dependent mechanisms involved in neurodegeneration.  Our initial screens involve neuronal-glial cell culture models that eventually will lead to testing in animals.  We currently use the best available animal model of apoE-linked AD, the human apoE targeted replacement (TR) or “knock in” mice.  I created three lines of human apoE TR mice, each expressing one the three human apoE isoforms and have since made multiple crosses to other AD related genes (e.g. APP, PS1 and tau).  I have given the apoE TR mice and made the crosses available to over 70 labs worldwide.

We are also working to build a better model of late onset AD by combining the apoE TR mice with non-mutated human APP and tau KI mice.  We think this is important because over 98% of all AD cases contain no mutations in the APP or tau genes.  Our hope is to better understand the true etiology and progression of late onset AD.  If successful this new model should aid in both novel target identification and new drug testing to produce therapeutics with greater efficacy in treating AD.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.