Regulation of spine structural plasticity by Arc/Arg3.1.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Dendritic spines are actin-rich, postsynaptic protrusions that contact presynaptic terminals to form excitatory chemical synapses. These synaptic contacts are widely believed to be the sites of memory formation and information storage, and changes in spine shape are thought to underlie several forms of learning-related plasticity. Both membrane trafficking pathways and the actin cytoskeleton drive activity-dependent structural and functional changes in dendritic spines. A key molecular player in regulating these processes is the activity-regulated cytoskeleton-associated protein (Arc), a protein that has diverse roles in expression of synaptic plasticity. In this review, we highlight important findings that have shaped our understanding of Arc's functions in structural and functional plasticity, as well as Arc's contributions to memory consolidation and disease.





Published Version (Please cite this version)


Publication Info

Newpher, Thomas M, Scott Harris, Jasmine Pringle, Colleen Hamilton and Scott Soderling (2018). Regulation of spine structural plasticity by Arc/Arg3.1. Seminars in cell & developmental biology, 77. pp. 25–32. 10.1016/j.semcdb.2017.09.022 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Thomas Mark Newpher

Associate Professor of the Practice of Psychology and Neuroscience

I teach, mentor, and advise for Duke's Undergraduate Studies in Neuroscience program, and serve as the Associate Director of Undergraduate Studies in Neuroscience. I also direct the Summer Neuroscience Program of Research in the Duke Institute for Brain Sciences. I earned my Ph.D. in molecular biology from Case Western Reserve University. After graduate school, I came to Duke University to receive postdoctoral training in the Neurobiology Department, where my research focused on identifying molecular mechanisms that underlie learning-related synaptic plasticity.

As the director of the Summer Neuroscience Program, I provide mentorship and professional development opportunities for undergraduate research fellows. My courses use a variety of team-based learning activities to promote critical thinking skills, foster collaboration among students, and create an engaging, student-centered classroom experience. As a co-PI in the Duke Team-Based Learning lab, I study the impacts of collaborative learning on student performance and classroom dynamics.


Scott Haydn Soderling

George Barth Geller Distinguished Professor of Molecular Biology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.