Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.

Abstract

BACKGROUND: Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. RESULTS: We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. CONCLUSIONS: Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s12860-017-0135-y

Publication Info

Xie, Guanhua, Marzena Swiderska-Syn, Mark L Jewell, Mariana Verdelho Machado, Gregory A Michelotti, Richard T Premont and Anna Mae Diehl (2017). Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biol, 18(1). p. 20. 10.1186/s12860-017-0135-y Retrieved from https://hdl.handle.net/10161/15150.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Diehl

Anna Mae Diehl

Florence McAlister Distinguished Professor of Medicine

Our lab has a long standing interest in liver injury and repair. To learn more about the mechanisms that regulate this process, we study cultured cells, animal models of acute and chronic liver damage and samples from patients with various types of liver disease. Our group also conducts clinical trials in patients with chronic liver disease. We are particularly interested in fatty liver diseases, such as alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD).

Research by our group has advanced understanding in two main areas: 1) immune system regulation of liver injury and regeneration and 2)the role of fetal morphogens, such as the hedgehog pathway, in regulating fibrotic responses to liver damage. Our basic research programs have been enjoyed continuous NIH support since 1989. We welcome students, post-doctoral fellows and visiting scientists who have interests in this research area to contact us about training opportunities and potential collaborations.

Since 2001 we have also been an active participant in the NIDDK-funded Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN), a national consortium comprised of 8 university medical centers selected to generate a national registry for patients with NAFLD and to conduct multicenter treatment trials for this disorder. We are actively recruiting patients for this program, as well as a number of other industry-supported NAFLD studies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.