Contractivity and ergodicity of the random map x →

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


The long time behavior of the random map xn → xn+1 = |xn-θn| is studied under various assumptions on the distribution of the θn. One of the interesting features of this random dynamical system is that for a single fixed deterministic θ the map is not a contraction, while the composition is almost surely a contraction if θ is chosen randomly with only mild assumptions on the distribution of the θ's. The system is useful as an explicit model where more abstract ideas can be explored concretely. We explore various measures of convergence rates, hyperbolically from randomness, and the structure of the random attractor.






Published Version (Please cite this version)


Publication Info

Mattingly, JC (2003). Contractivity and ergodicity of the random map x →. Theory of Probability and its Applications, 47(2). pp. 333–343. 10.1137/S0040585X97979767 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Jonathan Christopher Mattingly

Kimberly J. Jenkins Distinguished University Professor of New Technologies

Jonathan Christopher  Mattingly grew up in Charlotte, NC where he attended Irwin Ave elementary and Charlotte Country Day.  He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a Professor of Mathematics and of Statistical Science.

His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.

Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections. 

He is the recipient of a Sloan Fellowship and a PECASE CAREER award.  He is also a fellow of the IMS and the AMS. He was awarded the Defender of Freedom award by  Common Cause for his work on Quantifying Gerrymandering.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.