Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions.
Abstract
Radiolabelled meta-iodobenzylguanidine (MIBG) is selectively taken up by tumours of neuroendocrine origin, where its cellular localization is believed to be cytoplasmic. The radiopharmaceutical [131I]MIBG is now widely used in the treatment of neuroblastoma, but other radioconjugates of benzylguanidine have been little studied. We have investigated the cytotoxic efficacy of beta, alpha and Auger electron-emitting radioconjugates in treating neuroblastoma cells grown in monolayer or spheroid culture. Using a no-carrier-added synthesis route, we produced 123I-, 125I-, 131I- and 211At-labelled benzylguanidines and compared their in vitro toxicity to the neuroblastoma cell line SK-N-BE(2c) grown in monolayer and spheroid culture. The Auger electron-emitting conjugates ([123I]MIBG and [125I]MIBG) and the alpha-emitting conjugate ([211At]MABG) were highly toxic to monolayers and small spheroids, whereas the beta-emitting conjugate [131I]MIBG was relatively ineffective. The Auger emitters were more effective than expected if the cellular localization of MIBG is cytoplasmic. As dosimetrically predicted however, [211At]MABG was found to be extremely potent in terms of both concentration of radioactivity and number of atoms ml(-1) administered. In contrast, the Auger electron emitters were ineffective in the treatment of larger spheroids, while the beta emitter showed greater efficacy. These findings suggest that short-range emitters would be well suited to the treatment of circulating tumour cells or small clumps, whereas beta emitters would be superior in the treatment of subclinical metastases or macroscopic tumours. These experimental results provide support for a clinical strategy of combinations ('cocktails') of radioconjugates in targeted radiotherapy.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke
Ganesan Vaidyanathan
Dr. Vaidyanathan is a professor in the Department of Radiology. He is a member of the Nuclear Medicine track of the Medical Physics Graduate Program. His research involves development of radiopharmaceuticals especially for oncologic applications. Some of the projects he is involved in are given below.
I. New methods of radiohalogenating antibodies and its variants
a) Development of newer residualizing agents for the radiohalogenation of internalizing monoclonal antibodies.
b) Development of fluorine-18 labeled residualizing agents for labeling nanobodies.
c) Pre-targeting approach via bioorthogonal chemistry for in vivo labeling of antibodies and nanobodies with 18F and 211At.
d) Methods to label antibodies pre-conjugated with a prosthetic group of the tin precursor of residualizing agents.
e) Multimodal prosthetic groups for labeling antibodies and peptides with multiple radioisotopes.
II. MIBG Analogs for PET imaging
Radioiodinated MIBG is used in the diagnosis of the pathophysiology of the heart as well as neuroendocrine tumors such as neuroblastoma (NB). Design and development of newer fluorine-18 labeled MIBG analogues useful in the PET imaging of NB as well as that of myocardial diseases.
III. Noninvasive Imaging of Alkylguanine-DNA alkyltransferase (AGT)
AGT is a DNA repair protein and is primarily responsible for drug resistance in alkylator chemotherapy. An inverse correlation has been established between the tumor AGT content and the therapeutic outcome. The amount of AGT varies from tumor to tumor and within a group of patients of similar cancer. Thus, it is important to quantify tumor AGT of individual patients before administering alkylator chemotherapy. Our goal is to develop radiolabeled agents with which AGT can be quantified in a noninvasive manner by PET or SPECT imaging.
IV. PSMA targeting for prostate cancer therapy
Development of At-211 labeled urea-based inhibitor of Prostate-specific membrane antigen.
Michael Rod Zalutsky
The overall objective of our laboratory is the development of novel radioactive compounds for improving the diagnosis and treatment of cancer. This work primarily involves radiohalo-genation of biomolecules via site-specific approaches, generally via demetallation reactions. Radionuclides utilized for imaging include I-123, I-124 and F-18, the later two being of particular interest because they can be used for the quantification of biochemical and physiological processes in the living human through positron emission tomography. For therapy, astatine-211 decays by the emission of alpha-particles, a type of radiation considerably more cytotoxic that the beta-particles used in conventional endoradiotherapy. The range of At-211 alpha particles is only a few cell diameters, offering the possibility of extremely focal irradiation of malignant cells while leaving neighboring cells intact. Highlights of recent work include: a)
development of reagents for protein and peptide radioiodination that decrease deiodination in vivo by up to 100-fold, b) demonstration that At-211 labeled monoclonal antibodies are effective in the treatment of a rat model of neoplastic meningitis, c) synthesis of a thymidine analogue labeled with At-211 and the demonstration that this molecule is taken up in cellular DNA with highly cytotoxicity even at levels of only one atom bound per cell and d) development of
radiohalobenzylguanidines which are specifically cytotoxic for human neuroblastoma cells.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.