Structure-Function Analysis of Interallelic Complementation in <i>ROOTY</i> Transheterozygotes.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Auxin is a crucial plant growth regulator. Forward genetic screens for auxin-related mutants have led to the identification of key genes involved in auxin biosynthesis, transport, and signaling. Loss-of-function mutations in genes involved in glucosinolate biosynthesis, a metabolically related route that produces defense compounds, result in auxin overproduction. We identified an allelic series of fertile, hypomorphic Arabidopsis (Arabidopsis thaliana) mutants for the essential glucosinolate biosynthetic gene ROOTY (RTY) that exhibit a range of phenotypic defects characteristic of enhanced auxin production. Genetic characterization of these lines uncovered phenotypic suppression by cyp79b2 cyp79b3, wei2, and wei7 mutations and revealed the phenomenon of interallelic complementation in several RTY transheterozygotes. Structural modeling of RTY elucidated the relationships between structure and function in the RTY homo- and heterodimers, and unveiled the likely structural basis of interallelic complementation. This work underscores the importance of employing true null mutants in genetic complementation studies.





Published Version (Please cite this version)


Publication Info

Brumos, Javier, Benjamin G Bobay, Cierra A Clark, Jose M Alonso and Anna N Stepanova (2020). Structure-Function Analysis of Interallelic Complementation in ROOTY Transheterozygotes. Plant physiology, 183(3). pp. 1110–1125. 10.1104/pp.20.00310 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Benjamin Bobay

Assistant Professor in Radiology

I am the Assistant Director of the Duke University NMR Center and an Assistant Professor in the Duke Radiology Department. I was originally trained as a structural biochemist with an emphasis on utilizing NMR and continue to use this technique daily helping collaborators characterize protein structures and small molecules through a diverse set of NMR experiments. Through the structural characterization of various proteins, from both planta and eukaryotes, I have developed a robust protocol of utilizing computational biology for describing binding events, mutations, post-translations modifications (PTMs), and/or general behavior within in silico solution scenarios. I have utilized these techniques in collaborations ranging from plant pathologists at the Swammerdam Institute for Life Sciences department at the University of Amsterdam to biomedical engineers at North Carolina State University to professors in the Pediatrics department at Duke University. These studies have centered around the structural and functional consequences of PTMs (such as phosphorylation), mutation events, truncation of multi-domain proteins, dimer pulling experiments, to screening of large databases of ligands for potential binding events. Through this combination of NMR and computational biology I have amassed 50 peer-reviewed published articles and countless roles on scientific projects, as well as the development of several tutorials concerning the creation of ligand databases and high-throughput screening of large databases utilizing several different molecular dynamic and computational docking programs.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.