Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
dc.contributor.author | Aguareles, M | |
dc.contributor.author | Chapman, SJ | |
dc.contributor.author | Witelski, T | |
dc.date.accessioned | 2021-06-30T13:50:37Z | |
dc.date.available | 2021-06-30T13:50:37Z | |
dc.date.issued | 2020-12-15 | |
dc.date.updated | 2021-06-30T13:50:36Z | |
dc.description.abstract | Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. | |
dc.identifier.issn | 0167-2789 | |
dc.identifier.issn | 1872-8022 | |
dc.identifier.uri | ||
dc.language | en | |
dc.publisher | Elsevier BV | |
dc.relation.ispartof | Physica D: Nonlinear Phenomena | |
dc.relation.isversionof | 10.1016/j.physd.2020.132699 | |
dc.subject | Law of motion | |
dc.subject | Asymptotic | |
dc.subject | Pattern formation | |
dc.subject | Nonlinear oscillation | |
dc.subject | Spiral waves | |
dc.subject | Complex Ginzburg-Landau equation | |
dc.title | Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains | |
dc.type | Journal article | |
duke.contributor.orcid | Witelski, T|0000-0003-0789-9859 | |
pubs.begin-page | 132699 | |
pubs.end-page | 132699 | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Pratt | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Pratt School of Engineering | |
pubs.publication-status | Published | |
pubs.volume | 414 |
Files
Original bundle
- Name:
- 1909.13554.pdf
- Size:
- 3.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- Submitted version