Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains

dc.contributor.author

Aguareles, M

dc.contributor.author

Chapman, SJ

dc.contributor.author

Witelski, T

dc.date.accessioned

2021-06-30T13:50:37Z

dc.date.available

2021-06-30T13:50:37Z

dc.date.issued

2020-12-15

dc.date.updated

2021-06-30T13:50:36Z

dc.description.abstract

Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.

dc.identifier.issn

0167-2789

dc.identifier.issn

1872-8022

dc.identifier.uri

https://hdl.handle.net/10161/23398

dc.language

en

dc.publisher

Elsevier BV

dc.relation.ispartof

Physica D: Nonlinear Phenomena

dc.relation.isversionof

10.1016/j.physd.2020.132699

dc.subject

Law of motion

dc.subject

Asymptotic

dc.subject

Pattern formation

dc.subject

Nonlinear oscillation

dc.subject

Spiral waves

dc.subject

Complex Ginzburg-Landau equation

dc.title

Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains

dc.type

Journal article

duke.contributor.orcid

Witelski, T|0000-0003-0789-9859

pubs.begin-page

132699

pubs.end-page

132699

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Pratt

pubs.organisational-group

Duke

pubs.organisational-group

Pratt School of Engineering

pubs.publication-status

Published

pubs.volume

414

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1909.13554.pdf
Size:
3.95 MB
Format:
Adobe Portable Document Format
Description:
Submitted version