The emerging phenotype of long-term survivors with infantile Pompe disease.
Date
2012-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Purpose
Enzyme replacement therapy with alglucosidase alfa for infantile Pompe disease has improved survival creating new management challenges. We describe an emerging phenotype in a retrospective review of long-term survivors.Methods
Inclusion criteria included ventilator-free status and age ≤6 months at treatment initiation, and survival to age ≥5 years. Clinical outcome measures included invasive ventilator-free survival and parameters for cardiac, pulmonary, musculoskeletal, gross motor, and ambulatory status; growth; speech, hearing, and swallowing; and gastrointestinal and nutritional status.Results
Eleven of 17 patients met study criteria. All were cross-reactive immunologic material-positive, alive, and invasive ventilator-free at most recent assessment, with a median age of 8.0 years (range: 5.4-12.0 years). All had marked improvements in cardiac parameters. Commonly present were gross motor weakness, motor speech deficits, sensorineural and/or conductive hearing loss, osteopenia, gastroesophageal reflux, and dysphagia with aspiration risk. Seven of 11 patients were independently ambulatory and four required the use of assistive ambulatory devices. All long-term survivors had low or undetectable anti-alglucosidase alfa antibody titers.Conclusion
Long-term survivors exhibited sustained improvements in cardiac parameters and gross motor function. Residual muscle weakness, hearing loss, risk for arrhythmias, hypernasal speech, dysphagia with risk for aspiration, and osteopenia were commonly observed findings.Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Prater, Sean N, Suhrad G Banugaria, Stephanie M DeArmey, Eleanor G Botha, Erin M Stege, Laura E Case, Harrison N Jones, Chanika Phornphutkul, et al. (2012). The emerging phenotype of long-term survivors with infantile Pompe disease. Genetics in medicine : official journal of the American College of Medical Genetics, 14(9). pp. 800–810. 10.1038/gim.2012.44 Retrieved from https://hdl.handle.net/10161/27313.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Laura Elizabeth Case
Laura E Case, PT, DPT, MS, PhD, PCS, C/NDT is a board-certified clinical specialist in pediatric physical therapy. She has dedicated her career to teaching, research in childhood-onset neuromusculoskeletal disorders, and to the lifelong treatment of people with childhood-onset neurological and neuromuscular disorders such as cerebral palsy, traumatic brain injury, Duchenne muscular dystrophy, spinal muscular atrophy, Pompe disease, myelodysplasia, juvenile rheumatoid arthritis, and brachial plexus injury.
She has been involved in numerous clinical trials for the treatment of disorders including Pompe disease and other metabolic disorders, cerebral palsy, Duchenne muscular dystrophy, and spinal muscular atrophy. Dr. Case has participated in the development of international guidelines for the management of Duchenne muscular dystrophy, Pompe disease, and other glycogen storage diseases.
She teaches and consults internationally, has worked on a number of Center for Disease Control (CDC) task forces, has served on numerous committees and task forces in the pediatric section of APTA, served two terms as NC State Representative to the APTA Section on Pediatrics, and is a member of the North American Pompe Registry Board of Advisors.
Harrison N. Jones
Sarah Phyllis Young
As a clinical biochemical geneticist and a director of the Duke Biochemical Genetics laboratory, my research interests are focused on improving laboratory diagnostics for rare inherited disorders of metabolism. I am actively involved in the development of assays using mass spectrometry and other analytical techniques. My current research on biomarkers for lysosomal storage disorders, such as Fabry and Pompe disease and the mucopolysaccharidoses includes monitoring the response to novel therapies in patients. I also have an interest in neurometabolic disorders such as the creatine deficiency syndromes and sulfite oxidase and molybdenum cofactors. These disorders can be diagnosed using liquid chromatography-tandem mass spectrometric assays that measure biomarkers in urine. Guanidinoacetate methyltransferase deficiency is a disorder that can be detected in the newborn period and is amenable to dietary therapy, and is thus a good candidate for newborn screening.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.