Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance.
Date
2024-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
Previous magnetic resonance imaging (MRI) research suggests that aging is associated with a decrease in the functional interconnections within and between groups of locally organized brain regions (modules). Further, this age-related decrease in the segregation of modules appears to be more pronounced for a task, relative to a resting state, reflecting the integration of functional modules and attentional allocation necessary to support task performance. Here, using graph-theoretical analyses, we investigated age-related differences in a whole-brain measure of module connectivity, system segregation, for 68 healthy, community-dwelling individuals 18-78 years of age. We obtained resting-state, task-related (visual search), and structural (diffusion-weighted) MRI data. Using a parcellation of modules derived from the participants' resting-state functional MRI data, we demonstrated that the decrease in system segregation from rest to task (i.e., reconfiguration) increased with age, suggesting an age-related increase in the integration of modules required by the attentional demands of visual search. Structural system segregation increased with age, reflecting weaker connectivity both within and between modules. Functional and structural system segregation had qualitatively different influences on age-related decline in visual search performance. Functional system segregation (and reconfiguration) influenced age-related decline in the rate of visual evidence accumulation (drift rate), whereas structural system segregation contributed to age-related slowing of encoding and response processes (nondecision time). The age-related differences in the functional system segregation measures, however, were relatively independent of those associated with structural connectivity.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Madden, David J, Jenna L Merenstein, Hollie A Mullin, Shivangi Jain, Marc D Rudolph and Jessica R Cohen (2024). Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance. Brain structure & function, 229(7). pp. 1533–1559. 10.1007/s00429-024-02807-2 Retrieved from https://hdl.handle.net/10161/32169.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

David Joseph Madden
My research focuses primarily on the cognitive neuroscience of aging: the investigation of age-related changes in perception, attention, and memory, using both behavioral measures and neuroimaging techniques, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI).
The behavioral measures have focused on reaction time, with the goal of distinguishing age-related changes in specific cognitive abilities from more general effects arising from a slowing in elementary perceptual processes. The cognitive abilities of interest include selective attention as measured in visual search tasks, semantic and episodic memory retrieval, and executive control processes.
The behavioral measures are necessary to define the cognitive abilities of interest, and the neuroimaging techniques help define the functional neuroanatomy of those abilities. The PET and fMRI measures provide information regarding neural activity during cognitive performance. DTI is a recently developed technique that images the structural integrity of white matter. The white matter tracts of the brain provide critical pathways linking the gray matter regions, and thus this work will complement the studies using PET and fMRI that focus on gray matter activation.
A current focus of the research program is the functional connectivity among regions, not only during cognitive task performance but also during rest. These latter measures, referred to as intrinsic functional connectivity, are beginning to show promise as an index of overall brain functional efficiency, which can be assessed without the implementation of a specific cognitive task. From DTI, information can be obtained regarding how anatomical connectivity constrains intrinsic functional connectivity. It will be important to determine the relative influence of white matter pathway integrity, intrinsic functional connectivity, and task-related functional connectivity, as mediators of age-related differences in behavioral measures of cognitive performance.
Ultimately, the research program can help link age-related changes in cognitive performance to changes in the structure and function of specific neural systems. The results also have implications for clinical translation, in terms of the identification of neural biomarkers for the diagnosis of neural pathology and targeting rehabilitation procedures.

Jenna Merenstein
My research uses MRI to study the effect of healthy brain aging on numerous cognitive abilities, especially memory and attention. I also use MRI to study the structural and functional brain properties that differentiate Alzheimer's disease from healthy aging. I obtained my Ph.D. in Cognitive Neuroscience in April 2022 from Dr. Lani Bennett's lab at the University of California, Riverside. I am currently a Postdoctoral Associate working in the Brain Imaging and Analysis Center (BIAC) with Dr. David Madden.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.