Slow energy dissipation in anharmonic oscillator chains

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


We study the dynamic behavior at high energies of a chain of anharmonic oscillators coupled at its ends to heat baths at possibly different temperatures. In our setup, each oscillator is subject to a homogeneous anharmonic pinning potential V 1(qi) = |qi| 2k/2k and harmonic coupling potentials V 2(qi-qi-1) = (qi-q i-1) 2/2 between itself and its nearest neighbors. We consider the case k > 1 when the pinning potential is stronger than the coupling potential. At high energy, when a large fraction of the energy is located in the bulk of the chain, breathers appear and block the transport of energy through the system, thus slowing its convergence to equilibrium. In such a regime, we obtain equations for an effective dynamics by averaging out the fast oscillation of the breather. Using this representation and related ideas, we can prove a number of results. When the chain is of length 3 and k > 3/2, we show that there exists a unique invariant measure. If k > 2 we further show that the system does not relax exponentially fast to this equilibrium by demonstrating that 0 is in the essential spectrum of the generator of the dynamics. When the chain has five or more oscillators and k > 3/2, we show that the generator again has 0 in its essential spectrum. In addition to these rigorous results, a theory is given for the rate of decrease of the energy when it is concentrated in one of the oscillators without dissipation. Numerical simulations are included that confirm the theory. © 2009 Wiley Periodicals, Inc.






Published Version (Please cite this version)


Publication Info

Hairer, M, and JC Mattingly (2009). Slow energy dissipation in anharmonic oscillator chains. Communications on Pure and Applied Mathematics, 62(8). pp. 999–1032. 10.1002/cpa.20280 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Jonathan Christopher Mattingly

Kimberly J. Jenkins Distinguished University Professor of New Technologies

Jonathan Christopher  Mattingly grew up in Charlotte, NC where he attended Irwin Ave elementary and Charlotte Country Day.  He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a Professor of Mathematics and of Statistical Science.

His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.

Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections. 

He is the recipient of a Sloan Fellowship and a PECASE CAREER award.  He is also a fellow of the IMS and the AMS. He was awarded the Defender of Freedom award by  Common Cause for his work on Quantifying Gerrymandering.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.