Braid Loops with infinite monodromy on the Legendrian contact DGA

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



We present the first examples of elements in the fundamental group of the space of Legendrian links in the standard contact 3-sphere whose action on the Legendrian contact DGA is of infinite order. This allows us to construct the first families of Legendrian links that can be shown to admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These families include the first known Legendrian links with infinitely many fillings that are not rainbow closures of positive braids, and the smallest Legendrian link with infinitely many fillings known to date. We discuss how to use our examples to construct other links with infinitely many fillings, in particular giving the first Floer-theoretic proof that Legendrian (n,m) torus links have infinitely many Lagrangian fillings, if n is greater than 3 and m greater than 6, or (n,m)=(4,4),(4,5). In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed Lagrangian surfaces of that genus. A key technical ingredient behind our results is a new combinatorial formula for decomposable cobordism maps between Legendrian contact DGAs with integer (group ring) coefficients.







Lenhard Lee Ng

Professor of Mathematics

My research mainly focuses on symplectic topology and low-dimensional topology. I am interested in studying structures in symplectic and contact geometry (Weinstein manifolds, contact manifolds, Legendrian and transverse knots), especially through holomorphic-curve techniques. One particular interest is extracting topological information about knots through cotangent bundles, and exploring relations to topological string theory. I have also worked in Heegaard Floer theory, quantum topology, and sheaf theory, especially as they relate to Legendrian and transverse knots.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.