Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight.

Abstract

Purpose

Altered methylation at Insulin-like Growth Factor 2 (IGF2) regulatory regions has previously been associated with obesity, and several malignancies including colon, esophageal, and prostate adenocarcinomas, presumably via changes in expression and/or loss of imprinting, but the functional significance of these DNA methylation marks have not been demonstrated in humans. We examined associations among DNA methylation at IGF2 differentially methylated regions (DMRs), circulating IGF2 protein concentrations in umbilical cord blood (UCB) and birth weight in newborns.

Methods

Questionnaire data were obtained from 300 pregnant women recruited between 2005 and 2009. UCB DNA methylation was measured by bisulfite pyrosequencing. UCB plasma concentrations of soluble IGF2 were measured by ELISA assays. Generalized linear regression models were used to examine the relationship between DMR methylation and IGF2 levels.

Results

Lower IGF2 DMR methylation was associated with elevated plasma IGF2 protein concentrations (β = -9.87, p < 0.01); an association that was stronger in infants born to obese women (pre-pregnancy BMI > 30 kg/m(2), β = -20.21, p < 0.0001). Elevated IGF2 concentrations were associated with higher birth weight (p < 0.0001) after adjusting for maternal race/ethnicity, pre-pregnancy BMI, cigarette smoking, gestational diabetes, and infant sex. These patterns of association were not apparent at the H19 DMR.

Conclusion

Our data suggest that variation in IGF2 DMR methylation is an important mechanism by which circulating IGF2 concentrations, a putative risk factor for obesity and cancers of the colon, esophagus, and prostate, are modulated; associations that may depend on pre-pregnancy obesity.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s10552-012-9932-y

Publication Info

Hoyo, Cathrine, Kimberly Fortner, Amy P Murtha, Joellen M Schildkraut, Adelheid Soubry, Wendy Demark-Wahnefried, Randy L Jirtle, Joanne Kurtzberg, et al. (2012). Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer causes & control : CCC, 23(4). pp. 635–645. 10.1007/s10552-012-9932-y Retrieved from https://hdl.handle.net/10161/24671.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Schildkraut

Joellen Martha Schildkraut

Professor Emeritus in Family Medicine and Community Health

Dr. Schildkraut is an epidemiologist whose research includes the molecular epidemiology of ovarian, breast and brain cancers. Dr. Schildkraut's research interests include the study of the interaction between genetic and environmental factors. She is currently involved in a large study of genome wide association and ovarian cancer risk and survival. Some of her work is also focused on particular genetic pathways including the DNA repair and apoptosis pathways. She currently leads a study of African American women diagnosed with ovarian cancer. She is also collaborating in a large a case-control study of meningioma risk factors and with which a genome wide association analysis is about to commence.

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.

Huang

Zhiqing Huang

Assistant Professor in Obstetrics and Gynecology

Dr. Huang is an Assistant Professor in the Department of Obstetrics and Gynecology, Division of Reproductive Sciences, at Duke University Medical Center. She obtained her MD at North China Coal Medical University in China and her PhD at the University of Heidelberg in Germany under the mentorship of Dr. Ralph Witzgall. She did her postdoctoral training with Dr. Jiemin Wong at Baylor College of Medicine, studying how histone methylation and chromatin modifications regulate androgen receptor transcription. 

Dr. Huang’s research includes the following:

•The factors in the tumor microenvironment contribute to ovarian cancer progress;
•New drug development for recurrent ovarian cancer treatment;
•The early DNA methylation profiles contribute to cancer development in late life;
•The special changes in the tumor microenvironment;
•Epigenetics and epigenomics.
*The impact of lipid metabolism in the tumor microenvironment in cancer progression and treatment.
*Impact of ferroptosis in endometriosis development. 

Dr. Huang has received an R03 funding titled “Role of Age-Related Changes in the Tumor Microenvironment on Ovarian Cancer Progression” from NIA at NIH for 2021-2023.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2022, for a project titled "Single Cell Spatial Transcriptomics in Highly Aggressive and Less Aggressive Ovarian Cancer".
Dr. Huang has received Duke Cancer Institute 2023 spring pilot study award for07012023-06302024, the project title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence”.
Dr. Huang has received the American Cancer Society -Duke Cancer Institute (ASC-DCI) 2024 spring pilot study award for 07012024-06302025. The project title is "Early Establishment of Epigenetic Profiles that Increase Cancer Risk in Late Life”.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2023 for 01012024-12312024. The project's title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence".

Murphy

Susan Kay Murphy

Associate Professor in Obstetrics and Gynecology

Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease. 

Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).

Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.