Curcumin Ameliorates Heat-Induced Injury through NADPH Oxidase-Dependent Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and Mouse Skeletal Muscle.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats

Attention Stats



Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the mitochondrial electron transport chain are the primary sources of reactive oxygen species (ROS). Previous studies have shown that severe heat exposure damages mitochondria and causes excessive mitochondrial ROS production that contributes to the pathogenesis of heat-related illnesses.


We tested whether the antioxidant curcumin could protect against heat-induced mitochondrial dysfunction and skeletal muscle injury, and characterized the possible mechanism.


Mouse C2C12 myoblasts and rat flexor digitorum brevis (FDB) myofibers were treated with 5 μM curcumin; adult male C57BL/6J mice received daily curcumin (15, 50, or 100 mg/kg body weight) by gavage for 10 consecutive days. We compared ROS levels and mitochondrial morphology and function between treatment and nontreatment groups under unheated or heat conditions, and investigated the upstream mechanism and the downstream effect of curcumin-regulated ROS production.


In C2C12 myoblasts, curcumin prevented heat-induced mitochondrial fragmentation, ROS overproduction, and apoptosis (all P < 0.05). Curcumin treatment for 2 and 4 h at 37°C induced increases in ROS levels by 42% and 59% (dihydroethidium-derived fluorescence), accompanied by increases in NADPH oxidase protein expression by 24% and 32%, respectively (all P < 0.01). In curcumin-treated cells, chemical inhibition and genetic knockdown of NADPH oxidase restored ROS to levels similar to those of controls, indicating NADPH oxidase mediates curcumin-stimulated ROS production. Moreover, curcumin induced ROS-dependent shifting of the mitochondrial fission-fusion balance toward fusion, and increases in mitochondrial mass by 143% and membrane potential by 30% (both P < 0.01). In rat FDB myofibers and mouse gastrocnemius muscles, curcumin preserved mitochondrial morphology and function during heat stress, and prevented heat-induced mitochondrial ROS overproduction and tissue injury (all P < 0.05).


Curcumin regulates ROS hormesis favoring mitochondrial fusion/elongation, biogenesis, and improved function in rodent skeletal muscle. Curcumin may be an effective therapeutic target for heat-related illness and other mitochondrial diseases.





Published Version (Please cite this version)


Publication Info

Yu, Tianzheng, Jacob Dohl, Li Wang, Yifan Chen, Heath G Gasier and Patricia A Deuster (2020). Curcumin Ameliorates Heat-Induced Injury through NADPH Oxidase-Dependent Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and Mouse Skeletal Muscle. The Journal of nutrition, 150(9). pp. 2257–2267. 10.1093/jn/nxaa201 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Heath Gasier

Associate Professor in Anesthesiology

I am a physiologist who joined Duke University in 2019 after retiring from military service. My research has focused on understanding how oxidant stress impacts cellular and systems physiology. Initially, I studied in humans how hyperbaric oxygen (HBO2) within the therapeutic range and high altitude influence nitric oxide production, antioxidant defenses, tissue oxygenation and muscle performance. This work sparked my interest in redox biology and led me to train under Dr. Claude A. Piantadosi at Duke University. Here, I began to study in mice and rats the impact of extreme HBO2 on the central nervous system (CNS). The objectives were to identify in rodents the origin and mechanisms of CNS oxygen toxicity, and test targeted pharmacological intervention strategies. It was during this time that I became interested in heme oxygenase 1 (HO-1). During my final military assignment, I continued to work on HBO2 and CNS oxygen toxicity related research (pharmacological intervention) and initiated new studies examining how HO-1 induction influences musculoskeletal health in diet-induced obesity. These studies led to follow-on work aimed at determining the mechanisms of HO-1 induction and mitochondrial dynamic regulation in an in vitro model of diet-induced obesity. In addition, I was involved in research aimed at understanding how antioxidants influence skeletal muscle mitochondrial dynamics in rodents and cells exposed heat stress and extreme high altitude.

Since returning to Duke University, I continue to conduct research focused on understanding how oxidant stress induced by HBO2 and obesity influences mitochondrial dynamic regulation in the brain, lung and skeletal muscle. I am now studying how sarcopenia and gender influence these responses. I am also involved (Co-I) in research testing the efficacy of a home-based high intensity interval training program in COVID-19 critical illness and early parenteral nutrition in abdominal trauma victims. In both of these studies, my efforts will be directed towards measuring inflammation and mitochondrial quality control responses to the interventions, which are linked to HO-1 activation.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.