Tumor protein p53 mutation in archived tumor samples from a 12-year survivor of stage 4 pancreatic ductal adenocarcinoma may predict long-term survival with DeltaRex-G: A case report and literature review.
Date
2021-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
DeltaRex-G is a replication-incompetent amphotropic murine leukemia virus-based retroviral vector that displays a collagen-matrix-targeting decapeptide on its surface envelope protein, gp70, and encodes a cytocidal 'dominant negative', i.e. a truncated construct of the executive cyclin G1 (CCNG1) oncogene. DeltaRex-G inhibits the CCNG1 function of promoting cell competence and survival through the commanding CCNG1/cyclin-dependent kinase (CDK)/Myc/mouse double minute 2 homolog (Mdm2)/p53 axis. In 2009, DeltaRex-G was granted Fast Track designation from the US Food and Drug Administration for the treatment of pancreatic cancer. In 2019, the results of a phase 1/2 study that used DeltaRex-G as monotherapy for stage 4 chemotherapy-resistant pancreatic ductal adenocarcinoma (PDAC) were published. A unique participant of the aforementioned phase 1/2 study is now an 84-year-old Caucasian woman with chemoresistant PDAC who was treated with DeltaRex-G, 3x1011 colony forming units (cfu)/dose, 3 times/week for 4 weeks with a 2-week rest period, for 1.5 years. During the treatment period, the patient's tumors in the liver, lymph node and peritoneum exhibited progressive decreases in size, which were accompanied by a reduction and normalization of serum carbohydrate antigen 19-9 levels, and the patient achieved complete remission after 8 months of DeltaRex-G therapy with minimal side effects (grade 2 fatigue). Henceforth, the patient has been in remission for 12 years with no evidence of disease, no late therapy-related adverse events, and no further cancer therapy following DeltaRex-G treatment. The present study reports a mutation of tumor protein p53 (TP53) (G199V) found retrospectively in the patient's archived tumor samples. TP53 is a well-characterized tumor suppressor gene, and a critical regulatory component of the executive CCNG1/CDK/Myc/Mdm2/p53 axis, which regulates proliferative cell competence, DNA fidelity and survival. Studies are underway to determine whether TP53 mutations in pancreatic cancer can help identify a subset of patients with advanced metastatic cancer with an otherwise poor prognosis who would respond favorably to DeltaRex-G, which would broaden the treatment options for patients with otherwise lethal PDAC.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Morse, Michael A, Sant P Chawla, Terence Z Wong, Howard W Bruckner, Frederick L Hall and Erlinda M Gordon (2021). Tumor protein p53 mutation in archived tumor samples from a 12-year survivor of stage 4 pancreatic ductal adenocarcinoma may predict long-term survival with DeltaRex-G: A case report and literature review. Molecular and clinical oncology, 15(3). p. 186. 10.3892/mco.2021.2348 Retrieved from https://hdl.handle.net/10161/24158.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Terence Z. Wong
- Anatomic/functional oncologic Imaging: SPECT/CT, PET/CT, novel PET radiotracers
2. Radiotheranostics, Radionuclide therapy of cancer, Radiation Therapy Planning
3. Imaging biomarkers for guiding treatment strategies
4. Multicenter clinical trial development (NCI National Clinical Trials Network)
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.