Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor.
Date
2014-06-17
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Migliori, Amy D, Nicholas Keller, Tanfis I Alam, Marthandan Mahalingam, Venigalla B Rao, Gaurav Arya and Douglas E Smith (2014). Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nat Commun, 5. p. 4173. 10.1038/ncomms5173 Retrieved from https://hdl.handle.net/10161/15624.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Gaurav Arya
My research laboratory uses physics-based computational tools to provide fundamental, molecular-level understanding of a diverse range of biological and soft-material systems, with the aim of discovering new phenomena and developing new technologies. The methods we use or develop are largely based on statistical mechanics, molecular modeling and simulations, stochastic dynamics, coarse-graining, bioinformatics, machine learning, and polymer/colloidal physics. Our current research interests fall within four main themes: genome organization and regulation; polymer-nanoparticle composites; viral-DNA-packaging; and DNA nanotechnology. Please visit our website for more details about each of these research projects.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.