Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes).

Loading...
Thumbnail Image

Date

2020-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

64
views
12
downloads

Citation Stats

Attention Stats

Abstract

Microplastic fibers (MFs) pollute aquatic habitats globally via sewage release, stormwater runoff, or atmospheric deposition. Of the synthetic MFs, polyester (PES) and polypropylene (PP) are the most common. Field studies show that fish ingest large quantities of MFs. However, few laboratory studies have addressed host responses, particularly at the organ and tissue levels. Adult Japanese medaka (Oryzias latipes), a laboratory model fish, were exposed to aqueous concentrations of PES or PP MFs (10,000 MFs/L) for 21 days. Medaka egested 1,367 ± 819 PES MFs (0.1 ± 0.04 mg) and 157 ± 105 PP MFs (1.4 ± 0.06 mg) per 24 hrs, with PP egestion increasing over time. Exposure did not result in changes in body condition, gonadosomatic- or hepatosomatic indices. PES exposure resulted in no reproductive changes, but females exposed to PP MFs produced more eggs over time. MF exposure did not affect embryonic mortality, development, or hatching. Scanning electron microscopy (SEM) of gills revealed denuding of epithelium on arches, fusion of primary lamellae, and increased mucus. Histologic sections revealed aneurysms in secondary lamellae, epithelial lifting, and swellings of inner opercular membrane that altered morphology of rostral most gill lamellae. SEM and histochemical analyses showed increased mucous cells and secretions on epithelium of foregut; however, overt abrasions with sloughing of cells were absent. For these reasons, increased focus at the tissue and cell levels proved necessary to appreciate toxicity associated with MFs.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0229962

Publication Info

Hu, Lingling, Melissa Chernick, Anna M Lewis, P Lee Ferguson and David E Hinton (2020). Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes). PloS one, 15(3). p. e0229962. 10.1371/journal.pone.0229962 Retrieved from https://hdl.handle.net/10161/22432.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ferguson

P. Lee Ferguson

Associate Professor of Civil and Environmental Engineering

Dr. Ferguson is an Environmental Analytical Chemist who joined Duke in 2009 after six years as an assistant professor in the Department of Chemistry & Biochemistry at the University of South Carolina.

Research in the Ferguson laboratory is focused on development and application of analytical methods for measuring organic pollutants in the environment. Specifically, a major thrust of research in the lab involves the application of high resolution mass spectrometry to detect, identify, and quantify emerging contaminants in wastewater and drinking water.  His recent work has centered on the development of non-targeted analysis workflows and methods, assessment of polyfluorinated alkyl substances in water and wastewater, and leaching and bioaccessibility of polymer-associated chemicals from microplastic particles in the aquatic environment.  He has published over 100 peer-reviewed chapters and journal articles, serves on advisory councils for several organizations focused on emerging pollutants in the environment, and has testified before the U.S. Senate on environmental health concerns related to nanotechnology.  In North Carolina, he helped lead the formation of the NC PFAS Testing Network to assess statewide drinking water contamination from PFAS chemicals.

Hinton

David E. Hinton

Nicholas Distinguished Professor Emeritus of Environmental Quality

The Hinton laboratory focuses on mechanistic toxicity in all life stages of small, aquarium model fish and in selected species with particular environmental relevance (freshwater and marine). With the latter, investigations focus on stressor responses and include follow up studies after oil spills. Studies with the laboratory model fish take advantage of the compressed life cycle to improve understanding of organellar, cellular and tissues responses that arise after exposure and follow either a temporal and/or a concentration gradient. At the end of these serial examinations, we have pioneered the use of high resolution light and fluorescent microscopy and electron microscopy in these small fish species to better understand resultant phenotypes and to correlate structural alteration with molecular biological studies. In this way we are anchoring phenotypes with gene expression. In individual fish where specific genes have been mutated (Collaboration with Dr. Keith Cheng, Hershey Medical Center, Hershey, PA) or in individuals exposed to organic substances of known or expected toxicity, structural analysis at various levels of biological organization enables integration across all levels of biological organization enabling whole body phenomics. Special projects include The Duke Superfund Research Center, 2P42-ESO10356-10A2, supported by NIH/NIEHS. Studies investigate responses of fish to polycyclic aromatic hydrocarbons and include early life stages and multigenerational effects. Contaminated and reference sites are included in these investigations of feral fish. Also, we receive funding as part of theme 2 of the Center for Environmental Implications of Nano Technology (CEINT). Our studies seek to determine whether there are specific toxic consequences upon exposure to nano silver (Ag NPs) versus exposure to conventional silver. We hosted Na Zheng (Angie), Visiting Investigator, Associate Professor, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences. She was the recipient of a K.C. Wong award supporting her role as visiting investigator. Together, we investigated metals mixtures and embryo toxicity. We collaborate with Stella Marinakos, Pratt School and CEINT on the synthesis and refinement of nanoselenium. This complements work done over the past year with seleno-methionine and sodium selenite in parental and embryo exposures. We continue to investigate ways to assess whole body responses of aquarium model fish and to link phenotype to genotype. Collaboration with the Stapleton laboratory has investigated alterations in embryo and larval zebrafish exposed to flame retardant compounds and selected metabolites. Here our morphologic investigations have helped to differentiate between delayed development and toxicity in the developing eye.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.