Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity.


Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak diversity is key to understanding biodiversity of northern temperate forests. A phylogenetic study of biogeography, niche evolution and diversification patterns in Quercus was performed using 300 samples, 146 species. Next-generation sequencing data were generated using the restriction-site associated DNA (RAD-seq) method. A time-calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, and leaf habit data to reconstruct the biogeographic and evolutionary history of the American oaks. Our highly resolved phylogeny demonstrates sympatric parallel diversification in climatic niche, leaf habit, and diversification rates. The two major American oak clades arose in what is now the boreal zone and radiated, in parallel, from eastern North America into Mexico and Central America. Oaks adapted rapidly to niche transitions. The Mexican oaks are particularly numerous, not because Mexico is a center of origin, but because of high rates of lineage diversification associated with high rates of evolution along moisture gradients and between the evergreen and deciduous leaf habits. Sympatric parallel diversification in the oaks has shaped the diversity of North American forests.





Published Version (Please cite this version)


Publication Info

Hipp, Andrew L, Paul S Manos, Antonio González-Rodríguez, Marlene Hahn, Matthew Kaproth, John D McVay, Susana Valencia Avalos, Jeannine Cavender-Bares, et al. (2017). Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 10.1111/nph.14773 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Paul S. Manos

Professor in the Department of Biology

My research emphasizes woody plants, especially the systematics of Fagaceae (the oak family), Juglandaceae (the walnut family), and related wind-pollinated families of flowering plants (Fagales). Our lab uses DNA sequences to generate hypotheses of phylogenetic relationship for inferring morphological character evolution, analyzing patterns of biogeography, and testing species concepts. Students and postdocs have studied the systematics and diversification of the following angiosperm families: Acanthaceae, Nyctaginaceae, Zingiberaceae, Rhamnaceae, Montiaceae, Humiriaceae, Solanaceae, Convolvulaceae, Piperaceae, Ericaceae, and Dilleniaceae. Current research interests involve a range of evolutionary and ecological questions within the Fagaceae. For example, we have reinterpreted cupule evolution in the Fagaceae and calibrated the phylogeny for the American clades of Quercus. Ongoing collaborations with Andrew Hipp, John McVay, Andy Crowl, Antonio González-Rodríguez, and Jeannine Cavender-Bares seek to integrate phylogenetic data with phenotypic traits and functional genes to explain species distributions and to better understand the adaptive nature of introgression in the oaks. Other research interests include the phylogeography of eastern North American woody plants, and patterns of speciation via polyploidy in the true blueberries, Vaccinium section Cyanococcus (with Andy Crowl, Hamid Ashrafi, and Peter Fritsch).

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.