Natural constructal emergence of vascular design with turbulent flow

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Here, we show that vascular design emerges naturally when a volume is bathed by a single stream in turbulent flow. The stream enters the volume, spreads itself to bathe the volume, and then reconstitutes itself as a single stream before it exits the volume. We show that in the pursuit of a smaller global flow resistance and larger volumes, the flow architecture changes stepwise from a stack of identical elements bathed in parallel flow (like a deck of cards) to progressively more complex structures configured as trees matched canopy to canopy. The transition from one architecture to the next occurs at a precise volume size, which is identified. Each transition marks a decrease in the rate at which the global flow resistance increases with the volume size. This decrease accelerates as the volume size increases. The emergence of such vasculatures for turbulent flow is compared with the corresponding phenomenon when the flow is laminar. To predict this design generation phenomenon is essential to being able to scale up the designs of complex flow structures, from small scale models to life size models. The constructal law is a bridge between the principles of physics and biology. © 2010 American Institute of Physics.






Published Version (Please cite this version)


Publication Info

Cetkin, E, S Lorente and A Bejan (2010). Natural constructal emergence of vascular design with turbulent flow. Journal of Applied Physics, 107(11). p. 114901. 10.1063/1.3430941 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Adrian Bejan

J.A. Jones Distinguished Professor of Mechanical Engineering

Professor Bejan was awarded the Benjamin Franklin Medal 2018 and the Humboldt Research Award 2019. His research covers engineering science and applied physics: thermodynamics, heat transfer, convection, design, and evolution in nature.

He is ranked among the top 0.01% of the most cited and impactful world scientists (and top 10 in Engineering world wide) in the 2019 citations impact database created by Stanford University’s John Ioannidis, in PLoS Biology.  He is the author of 30 books and 700 peer-referred articles. His h-index is 111 with 92,000 citations on Google Scholar. He received 18 honorary doctorates from universities in 11 countries.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.