A practical criterion for positivity of transition densities

dc.contributor.author

Herzog, David P

dc.contributor.author

Mattingly, Jonathan C

dc.date.accessioned

2015-03-20T17:39:11Z

dc.date.issued

2015-07-10

dc.description.abstract

© 2015 IOP Publishing Ltd & London Mathematical Society.We establish a simple criterion for locating points where the transition density of a degenerate diffusion is strictly positive. Throughout, we assume that the diffusion satisfies a stochastic differential equation (SDE) on Rd with additive noise and polynomial drift. In this setting, we will see that it is often the case that local information of the flow, e.g. the Lie algebra generated by the vector fields defining the SDE at a point x ∈ Rd, determines where the transition density is strictly positive. This is surprising in that positivity is a more global property of the diffusion. This work primarily builds on and combines the ideas of Arous and Lé andre (1991 Décroissance exponentielle du noyau de la chaleur sur la diagonale. II Probab. Theory Relat. Fields 90 377-402) and Jurdjevic and Kupka (1985 Polynomial control systems Math. Ann. 272 361-8).

dc.identifier.eissn

1361-6544

dc.identifier.issn

0951-7715

dc.identifier.uri

https://hdl.handle.net/10161/9510

dc.publisher

IOP Publishing

dc.relation.ispartof

Nonlinearity

dc.relation.isversionof

10.1088/0951-7715/28/8/2823

dc.title

A practical criterion for positivity of transition densities

dc.type

Journal article

duke.contributor.orcid

Mattingly, Jonathan C|0000-0002-1819-729X

pubs.begin-page

2823

pubs.end-page

2845

pubs.issue

8

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Statistical Science

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

28

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1407.3858v1.pdf
Size:
289.24 KB
Format:
Adobe Portable Document Format
Description:
Submitted version