Association of genetic variants of <i>TMEM135</i> and <i>PEX5</i> in the peroxisome pathway with cutaneous melanoma-specific survival.
Date
2021-03
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Peroxisomes are ubiquitous and dynamic organelles that are involved in the metabolism of reactive oxygen species (ROS) and lipids. However, whether genetic variants in the peroxisome pathway genes are associated with survival in patients with melanoma has not been established. Therefore, our aim was to identify additional genetic variants in the peroxisome pathway that may provide new prognostic biomarkers for cutaneous melanoma (CM).Methods
We assessed the associations between 8,397 common single-nucleotide polymorphisms (SNPs) in 88 peroxisome pathway genes and CM disease-specific survival (CMSS) in a two-stage analysis. For the discovery, we extracted the data from a published genome-wide association study from The University of Texas MD Anderson Cancer Center (MDACC). We then replicated the results in another dataset from the Nurse Health Study (NHS)/Health Professionals Follow-up Study (HPFS).Results
Overall, 95 (11.1%) patients in the MDACC dataset and 48 (11.7%) patients in the NHS/HPFS dataset died of CM. We found 27 significant SNPs in the peroxisome pathway genes to be associated with CMSS in both datasets after multiple comparison correction using the Bayesian false-discovery probability method. In stepwise Cox proportional hazards regression analysis, with adjustment for other covariates and previously published SNPs in the MDACC dataset, we identified 2 independent SNPs (TMEM135 rs567403 C>G and PEX5 rs7969508 A>G) that predicted CMSS (P=0.003 and 0.031, respectively, in an additive genetic model). The expression quantitative trait loci analysis further revealed that the TMEM135 rs567403 GG and PEX5 rs7969508 GG genotypes were associated with increased and decreased levels of mRNA expression of their genes, respectively.Conclusions
Once our findings are replicated by other investigators, these genetic variants may serve as novel biomarkers for the prediction of survival in patients with CM.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wang, Haijiao, Hongliang Liu, Wei Dai, Sheng Luo, Christopher I Amos, Jeffrey E Lee, Xin Li, Ying Yue, et al. (2021). Association of genetic variants of TMEM135 and PEX5 in the peroxisome pathway with cutaneous melanoma-specific survival. Annals of translational medicine, 9(5). p. 396. 10.21037/atm-20-2117 Retrieved from https://hdl.handle.net/10161/22721.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Sheng Luo
Qingyi Wei
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.
Area of Expertise: Epidemiology
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.