Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors.

Loading...
Thumbnail Image

Date

2016-11-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

248
views
26
downloads

Citation Stats

Abstract

In volumetric modulated arc therapy (VMAT), gantry angles, dose rate and the MLC positions vary with the radiation delivery. The quality assurance (QA) system should be able to catch the planning and machine errors. The aim of this study was to investigate the sensitivity of three VMAT QA systems to machine errors.Several types of potential linac machine errors unique to VMAT delivery were simulated in sinusoidal function of gantry angle, including gantry angle itself, MLC position and linac output. Two commercial QA systems, ArcCheck and Delta4, and an in-house developed EPID technique were compared in this study. Fifteen full arcs from head and neck plans were selected and modified to include five magnitudes of each type of error, resulting in measurements and γ analyses of 240 arcs on each system. Both qualitative and quantitative comparisons were performed using receiver operating characteristic (ROC), γ pass rate gradient, and overlap histogram methods.In ROC analysis, the area under curve (AUC) represents the sensitivity and increases with the error magnitude. Using the criteria of 2 %/2 mm/2° (angle to agreement, ATA, only for EPID) and keeping AUC > 0.95, the minimum error detectable of ArcCheck, Delta4 and EPID are (2, 3, 3)° in gantry angle and (4, 2, 3) mm in MLC positions for the head and neck plans. No system is sensitive to the simulated output error, the AUC values were all below 0.70 even with 5 % output error. The γ gradient for gantry angle, MLC position and output errors are (-5.1, -2.6, -3.6)%/°, (-2.6, -7.1, -3.3)%/mm and (-0.2, -0.2, -0.3)%/% for ArcCheck, Delta4 and EPID, respectively. Therefore, these two analyses are consistent and support the same conclusion. The ATA parameter in EPID technique can be adjusted to tune its sensitivity.We found that ArcCheck is more sensitive to gantry angle error and Delta4 is more sensitive to MLC position error. All three systems are not sensitive to the simulated output error. With additional analysis parameter, the EPID technique can be tuned to have optimal sensitivity and is able to perform QA for full field size with highest resolution. In addition, ROC analysis avoids the choice of γ pass rate threshold and is more robust compared with other analysis methods.

Type

Journal article

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s13014-016-0725-4

Publication Info

Liang, Bin, Bo Liu, Fugen Zhou, Fang-Fang Yin and Qiuwen Wu (2016). Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors. Radiation Oncology (London, England), 11(1). p. 146. 10.1186/s13014-016-0725-4 Retrieved from https://hdl.handle.net/10161/21115.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics

Wu

Qiuwen Wu

Professor of Radiation Oncology

My research interests include intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), Dynamic Electron Arc Radiotherapy (DEAR), and image-guided radiation therapy (IGRT). For IMRT, my work includes the development of the research platform, fast and accurate dose calculations, optimization based on physical and biological objectives such as generalized equivalent uniform dose (gEUD), and delivery with a dynamic multi-leaf collimator (DMLC). For VMAT, I am interested in optimization, quality assurance, and novel applications. For DEAR, I'm interested in the treatment planning and delivery verifications. For IGRT, my work includes the development of the infrastructure of the online and offline image guidance, characterization of patient anatomic changes and treatment uncertainties, margin calculations, and adaptive treatment planning. My recent research interests also include the use of AI in treatment planning, Brachytherapy dose calculation and plan optimization.

My clinical interests include prostate cancer, head and neck cancer, total body irradiation (TBI), and total skin irradiation (TSI)


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.