Characterization of Blast-Induced Activation of Human Immune Cells

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

451
views
606
downloads

Abstract

Blast related injuries have become a common occurrence among soldiers and civilians serving in Iraq and Afghanistan, and minor traumatic brain injuries associated with such incidents have increased correspondingly. Advances in protection and treatment have allowed many individuals to survive what would have previously been deadly blasts but there is a concern that there are additional negative side effects associated with such exposure. This study hypothesizes that human T leukocytes and promyelocytes respond to blasts by initiating cell death processes and releasing microparticles that could lead to further systemic inflammation. It was found that there was a significant (p<0.05) increase in lactase dehydrogenase activity and microparticle release in HL-60 cells blasted using a shock tube (with an incident blast overpressure of either 1000 or 1300 kPA and a duration of 2 ms) compared to control populations after 24 hours. There were no corresponding increases in Jurkat cells exposed to similar conditions.

Description

Provenance

Citation

Citation

Garrett, Joel Frederick (2012). Characterization of Blast-Induced Activation of Human Immune Cells. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/6207.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.