Polymorphisms in the mTOR gene and risk of sporadic prostate cancer in an Eastern Chinese population.
Date
2013-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
BACKGROUND: The mTOR gene regulates cell growth by controlling mRNA translation, ribosome biogenesis, autophagy, and metabolism. Abnormally increased expression of mTOR was associated with carcinogenesis, and its functional single nucleotide polymorphisms (SNPs) may regulate the expression of mTOR and thus contribute to cancer risk. METHODOLOGY/PRINCIPAL FINDINGS: In a hospital-based case-control study of 1004 prostate cancer (PCa) cases and 1051 cancer-free controls, we genotyped six potentially functional SNPs of mTOR (rs2536 T>C, rs1883965 G>A, rs1034528 G>C, rs17036508 T>C, rs3806317 A>G, and rs2295080 T>G) and assessed their associations with risk of PCa by using logistic regression analysis. CONCLUSIONS/SIGNIFICANCES: In the single-locus analysis, we found a significantly increased risk of PCa associated with mTOR rs2536 CT/CC and rs1034528 CG/CC genotypes [adjusted OR = 1.42 (1.13-1.78), P = 0.003 and 1.29 (1.07-1.55), P = 0.007), respectively], compared with their common homozygous genotypes, whereas mTOR rs2295080 GT/GG genotypes were associated with a decreased risk of PCa [adjusted OR = 0.76 (0.64-0.92), P = 0.003], compared with wild-type TT genotypes. In the combined analysis of the six SNPs, we found that individuals carrying two or more adverse genotypes had an increased risk of PCa [adjusted OR = 1.24 (1.04-1.47), P = 0.016], compared with individuals carrying less than two adverse genotypes. In the multiple dimension reduction analysis, body mass index (BMI) was the best one-factor model with the highest CVC (100%) and the lowest prediction error (42.7%) among all seven factors. The model including an interaction among BMI, rs17036508, and rs2536 was the best three-factor model with the highest CVC (100%) and the lowest prediction error of 41.9%. These findings suggested that mTOR SNPs may contribute to the risk of PCa in Eastern Chinese men, but the effect was weak and needs further validation by larger population-based studies.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Li, Qiaoxin, Chengyuan Gu, Yao Zhu, Mengyun Wang, Yajun Yang, Jiucun Wang, Li Jin, Mei-Ling Zhu, et al. (2013). Polymorphisms in the mTOR gene and risk of sporadic prostate cancer in an Eastern Chinese population. PloS one, 8(8). p. e71968. 10.1371/journal.pone.0071968 Retrieved from https://hdl.handle.net/10161/17993.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Qingyi Wei
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.
Area of Expertise: Epidemiology
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.