Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum.

Loading...
Thumbnail Image

Date

2013-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

185
views
280
downloads

Citation Stats

Abstract

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1152/jn.00906.2011

Publication Info

Ashmore, Robin C, and Marc A Sommer (2013). Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum. J Neurophysiol, 109(8). pp. 2129–2144. 10.1152/jn.00906.2011 Retrieved from https://hdl.handle.net/10161/10213.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sommer

Marc A. Sommer

Professor of Biomedical Engineering

We study circuits for cognition. Using a combination of neurophysiology and biomedical engineering, we focus on the interaction between brain areas during visual perception, decision-making, and motor planning. Specific projects include the role of frontal cortex in metacognition, the role of cerebellar-frontal circuits in action timing, the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms of transcranial magnetic stimulation (TMS).


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.