Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

233
views
194
downloads

Citation Stats

Abstract

The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0065963

Publication Info

Christoforou, Nicolas, Brian Liau, Syandan Chakraborty, Malathi Chellapan, Nenad Bursac and Kam W Leong (2013). Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS One, 8(6). p. e65963. 10.1371/journal.pone.0065963 Retrieved from https://hdl.handle.net/10161/8423.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bursac

Nenad Bursac

Professor of Biomedical Engineering

Bursac's research interests include: Stem cell, tissue engineering, and gene based therapies for heart and muscle regeneration; Cardiac electrophysiology and arrhythmias; Organ-on-chip and tissue engineering technologies for disease modeling and therapeutic screening; Small and large animal models of heart and muscle injury, disease, and regeneration.

The focus of my research is on application of pluripotent stem cells, tissue engineering, and gene therapy technologies for: 1) basic studies of striated muscle biology and disease in vitro and 2) regenerative therapies in small and large animal models in vivo. For in vitro studies, micropatterning of extracellular matrix proteins or protein hydrogels and 3D cell culture are used to engineer rodent and human striated muscle tissues that replicate the structure-function relationships present in healthy and diseased muscles. We use these models to separate and systematically study the roles of structural and genetic factors that contribute cardiac and skeletal muscle function and disease at multiple organizational levels, from single cells to tissues. Combining cardiac and skeletal muscle cells with primary or iPSC-derived non-muscle cells (endothelial cells, smooth muscle cells, immune system cells, neurons) allows us to generate more realistic models of healthy and diseased human tissues and utilize them to mechanistically study molecular and cellular processes of tissue injury, vascularization, innervation, electromechanical integration, fibrosis, and functional repair. Currently, in vitro models of Duchenne Muscular Dystrophy, Pompe disease, dyspherlinopathies, and various cardiomyopathies are studied in the lab. For in vivo studies, we employ rodent models of volumetric skeletal muscle loss, cardiotoxin and BaCl2 injury as well as myocardial infarction and transverse aortic constriction to study how cell, tissue engineering, and gene (viral) therapies can lead to safe and efficient tissue repair and regeneration. In large animal (porcine) models of myocardial injury and arrhythmias, we are exploring how human iPSC derived heart tissue patches and application of engineered ion channels can improve cardiac function and prevent heart failure or sudden cardiac death.

 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.