Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons.

Loading...
Thumbnail Image

Date

2013-02

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

27
views
15
downloads

Citation Stats

Abstract

Objectives

The objective of this study is to determine whether transient spinal cord ischemia activates small ubiquitin-like modifier (SUMO1-3) conjugation, a post-translational protein modification that protects neurons from ischemia-like conditions.

Methods

Mice were subjected to 8-12 min of spinal cord ischemia and 3-24 h of recovery using a newly developed experimental model. To characterize the model, activation of stress response pathways induced after spinal cord ischemia, previously observed in other experimental models, was verified by western blot analysis. Levels and subcellular localization of SUMO-conjugated proteins in spinal cords were evaluated by western blot analysis and immunohistochemistry, respectively.

Results

Following transient spinal cord ischemia, stress responses were activated as indicated by increased phosphorylation of eukaryotic initiation factor 2 (eIF2α), extracellular signal-regulated kinases (ERK1/2) and Akt. SUMO1 conjugation was not altered, but a selective rise in levels of SUMO2/3-conjugated proteins occurred, peaking at 6 h reperfusion. The marked activation of SUMO2/3 conjugation was a neuronal response to ischemia, as indicated by co-localization with the neuronal marker NeuN, and was associated with nuclear accumulation of SUMO2/3-conjugated proteins.

Conclusion

Our study suggests that spinal cord neurons respond to ischemic stress by activation of SUMO2/3 conjugation. Many of the identified SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression and genome stability. It is therefore concluded that the post-ischemic activation of SUMO2/3 conjugation may define the fate of neurons exposed to a transient interruption of blood supply, and that this pathway could be a therapeutic target to increase the resistance of spinal cord neurons to transient ischemia.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/sc.2012.100

Publication Info

Wang, Z, R Wang, H Sheng, SP Sheng, W Paschen and W Yang (2013). Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal cord, 51(2). pp. 139–143. 10.1038/sc.2012.100 Retrieved from https://hdl.handle.net/10161/23282.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sheng

Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.

Yang

Wei Yang

Professor in Anesthesiology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.