Bold Diagrammatic Monte Carlo in the Lens of Stochastic Iterative Methods

Loading...
Thumbnail Image

Date

2017-11-30

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

153
views
120
downloads

Abstract

This work aims at understanding of bold diagrammatic Monte Carlo (BDMC) methods for stochastic summation of Feynman diagrams from the angle of stochastic iterative methods. The convergence enhancement trick of the BDMC is investigated from the analysis of condition number and convergence of the stochastic iterative methods. Numerical experiments are carried out for model systems to compare the BDMC with related stochastic iterative approaches.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.