Complexity of randomized algorithms for underdamped Langevin dynamics

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

111
views
47
downloads

Abstract

We establish an information complexity lower bound of randomized algorithms for simulating underdamped Langevin dynamics. More specifically, we prove that the worst $L^2$ strong error is of order $\Omega(\sqrt{d}, N^{-3/2})$, for solving a family of $d$-dimensional underdamped Langevin dynamics, by any randomized algorithm with only $N$ queries to $\nabla U$, the driving Brownian motion and its weighted integration, respectively. The lower bound we establish matches the upper bound for the randomized midpoint method recently proposed by Shen and Lee [NIPS 2019], in terms of both parameters $N$ and $d$.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor of Mathematics

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.