Linear regression model with a randomly censored predictor:Estimation procedures

Loading...
Thumbnail Image

Date

2017-11-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

116
views
151
downloads

Abstract

We consider linear regression model estimation where the covariate of interest is randomly censored. Under a non-informative censoring mechanism, one may obtain valid estimates by deleting censored observations. However, this comes at a cost of lost information and decreased efficiency, especially under heavy censoring. Other methods for dealing with censored covariates, such as ignoring censoring or replacing censored observations with a fixed number, often lead to severely biased results and are of limited practicality. Parametric methods based on maximum likelihood estimation as well as semiparametric and non-parametric methods have been successfully used in linear regression estimation with censored covariates where censoring is due to a limit of detection. In this paper, we adapt some of these methods to handle randomly censored covariates and compare them under different scenarios to recently-developed semiparametric and nonparametric methods for randomly censored covariates. Specifically, we consider both dependent and independent randomly censored mechanisms as well as the impact of using a non-parametric algorithm on the distribution of the randomly censored covariate. Through extensive simulation studies, we compare the performance of these methods under different scenarios. Finally, we illustrate and compare the methods using the Framingham Health Study data to assess the association between low-density lipoprotein (LDL) in offspring and parental age at onset of a clinically-diagnosed cardiovascular event.

Department

Description

Provenance

Citation

Scholars@Duke

Matsouaka

Roland Albert Matsouaka

Associate Professor of Biostatistics & Bioinformatics

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.