Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture

Loading...
Thumbnail Image

Date

2019-03-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

48
views
77
downloads

Citation Stats

Abstract

© 2018 Elsevier Inc. The 190 km2 Calhoun Critical Zone Observatory in the Piedmont region of South Carolina, USA lies in an ancient, highly weathered landscape transformed by historic agricultural erosion. Following the conversion of largely hardwood forests to cultivated fields and pastures for ~200 years, excess runoff from fields led to extreme sheet, rill, and gully erosion across the landscape. Roads, terraces, and a variety of other human disturbances have increased the landscape's surface roughness. By the 1950s, cultivation-based agriculture was largely abandoned across most of the Southern Piedmont due to soil erosion, declining agricultural productivity, and shifting agricultural markets. Secondary forests, dominated by loblolly and shortleaf pines, have since regrown on much of the landscape, including the 1500 km2 Sumter National Forest, which was purchased from farmers and private land owners in the 1930s. Although this landscape was intensively farmed for approximately 150 years, there are a few hardwood forest stands and even entire small watersheds that have never been plowed and degraded by farming. Such relatively old hardwood stands and watersheds comprise relic landforms whose soils, regoliths, and vegetation are of interest to hydrologists, environmental historians, biogeochemists, geomorphologists, geologists, pedologists, and others interested in understanding the legacy of land-use history in this severely altered environment. In this work we champion the need for high-resolution terrain mapping and demonstrate how Light Detection And Ranging (LiDAR) digital elevation model (DEM) data and microtopographic terrain roughness analyses (MTRA) can be used to infer land use history and management. This is accomplished by analyzing fine scale variation in terrain slope across the 1190 km2 CCZO using data derived from three independent and overlapping LiDAR datasets at varying spatial resolutions. Terrain slope variability MTRA is further compared to three other methods of capturing and quantifying fine-scale surface roughness. We lastly demonstrate how these analyses can be employed in concert with historic aerial photography from the 1930's, contemporary Landsat remote sensing data, and ecological field data to identify reference relic landforms: hardwood stands, hillslopes, and small watersheds that have experienced minimal anthropogenic erosion for study and conservation.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.rse.2018.12.025

Publication Info

Brecheisen, ZS, CW Cook, PR Heine and DDB Richter (2019). Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment, 222. pp. 78–89. 10.1016/j.rse.2018.12.025 Retrieved from https://hdl.handle.net/10161/21226.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Richter

Daniel D. Richter

Professor in the Division of Earth and Climate Science

Richter’s research and teaching links soils with ecosystems and the wider environment, most recently Earth scientists’ Critical Zone.  He focuses on how humanity is transforming Earth’s soils from natural to human-natural systems, specifically how land-uses alter soil processes and properties on time scales of decades, centuries, and millennia.  Richter's book, Understanding Soil Change (Cambridge University Press), co-authored with his former PhD student Daniel Markewitz (Professor at University of Georgia), explores a legacy of soil change across the Southern Piedmont of North America, from the acidic soils of primary hardwood forests that covered the region until 1800, through the marked transformations affected by long-cultivated cotton, to contemporary soils of rapidly growing and intensively managed pine forests.  Richter and colleagues work to expand the concept of soil as the full biogeochemical weathering system of the Earth’s crust, ie, the Earth’s belowground Critical Zone, which can be tens of meters deep.  The research examines decadal to millennial changes in the chemistry and cycling of soil C, N, P, Ca, K, Mg, and trace elements B, Fe, Mn, Cu, Be, Zr, and Zn across full soil profiles as deep at 30-m.  Since 1988, Richter has worked at and directed the Long-Term Calhoun Soil-Ecosystem Experiment (LTSE) in the Piedmont of South Carolina, a collaborative study with the USDA Forest Service that quantifies how soils form as natural bodies and are transformed by human action, and a study that has grown to become an international model for such long-term soil and ecosystem studies.  In 2005, Richter and students initiated the first comprehensive international inventory project of the world’s LTSEs, using an advanced-format website that has networked metadata from 250 LTSEs.  The LTSEs project has held three workshops at Duke University, NCSU's Center for Environmental Farming Systems, and the USDA Forest Service's Calhoun Experimental Forest and Coweeta Hydrologic Laboratory, hosting representatives from Africa, Asia, Australia, Europe, and the Americas.  Richter's 60-year old Long Term Calhoun Soil and Ecosystem Experiment is linked to similar experiments and platforms around the world via the ‘Long-Term Soil-Ecosystem Experiments Global Inventory’, assembled by Dan Richter, Pete Smith, and Mike Hofmockel."He is an active member of the International Commission on Stratigraphy’s Working Group on the Anthropocene.  Richter has written in the peer-reviewed literature about all of these projects, and in November 2014 his soils research at the Calhoun and his soils teaching were featured in Science magazine.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.