Periodic Autoregressive Conditional Heteroskedasticity

Loading...
Thumbnail Image

Date

1996

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

865
views
1288
downloads

Abstract

Most high-frequency asset returns exhibit seasonal volatility patterns. This article proposes a new class of models featuring periodicity in conditional heteroscedasticity explicitly designed to capture the repetitive seasonal time variation in the second-order moments. This new class of periodic autoregressive conditional heteroscedasticity, or P-ARCH, models is directly related to the class of periodic autoregressive moving average (ARMA) models for the mean. The implicit relation between periodic generalized ARCH (P-GARCH) structures and time-invariant seasonal weak GARCH processes documents how neglected autoregressive conditional heteroscedastic periodicity may give rise to a loss in forecast efficiency. The importance and magnitude of this informational loss are quantified for a variety of loss functions through the use of Monte Carlo simulation methods. Two empirical examples with daily bilateral Deutschemark/British pound and intraday Deutschemark/U.S. dollar spot exchange rates highlight the practical relevance of the new P-GARCH class of models. Extensions to discrete-time periodic representations of stochastic volatility models subject to time deformation are briefly discussed.

Department

Description

Provenance

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.