Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current.

Loading...
Thumbnail Image

Date

2016-10

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

103
views
94
downloads

Citation Stats

Attention Stats

Abstract

BACKGROUND:Mutations in the CACNA1C-encoded L-type calcium channel have been associated with Timothy syndrome (TS) with severe QT prolongation, syndactyly, facial dysmorphisms, developmental delay, and sudden death. Recently, patients hosting CACNA1C mutations with only long QT syndrome (LQTS) have been described. We sought to identify novel variants in CACNA1C associated with either TS or LQTS, and to determine the impact of the mutation on channel function. METHODS/RESULTS:Two probands were identified with mutations in CACNA1C, one with a TS-associated mutation, G406R, and a second with genotype-negative LQTS. Illumina HiSeq 2000 whole exome sequencing on the genotype-negative LQTS proband revealed a novel variant, CACNA1C-L762F, that co-segregated within a multi-generational family. The missense mutation localized to the DII/DIII intracellular interlinker segment of the channel in a highly conserved region in close proximity to the 6th transmembrane segment of domain II (DIIS6). Whole cell patch clamp of heterologously expressed CACNA1C-L762F in TSA201 cells demonstrated slower inactivation tau and increased sustained and window current. Comprehensive review and topological mapping of all described CACNA1C mutations revealed TS-specific hotspots localizing to the cytoplasmic aspect of 6th transmembrane segment of respective domains. Probands hosting TS mutations were associated with elevated QTc, higher prevalence of 2:1 AV block, and a younger age at presentation compared to LQTS. CONCLUSIONS:The CACNA1C-L762F mutation is associated with development of LQTS through slower channel inactivation and increased sustained and window current. TS-associated mutations localize to specific areas of CACNA1C and are associated with a younger age at presentation, higher QTc, and 2:1 AV block than isolated LQTS-associated mutations.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ijcard.2016.06.081

Publication Info

Landstrom, AP, NJ Boczek, D Ye, CY Miyake, CM De la Uz, HD Allen, MJ Ackerman, JJ Kim, et al. (2016). Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. International journal of cardiology, 220. pp. 290–298. 10.1016/j.ijcard.2016.06.081 Retrieved from https://hdl.handle.net/10161/20308.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Landstrom

Andrew Paul Landstrom

Associate Professor of Pediatrics

Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart.  He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome.  He also specializes in the evaluation of children following a cardiac arrest or after the sudden and unexplained death of a family member.  He has expertise in cardiovascular genetics and uses it to identify individuals in a family who may be at risk of a disease, even if all clinical testing is negative.  As a scientist, he is trained in genetics and cell biology.  He runs a research lab exploring the genetic and molecular causes of arrhythmias, sudden unexplained death syndromes, and heart muscle disease (cardiomyopathies).  He utilizes patient-derived induced pluripotent stem cells and genetic mouse models to identify the mechanisms of cardiovascular genetic disease with the goal of developing novel therapies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.