Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination.
Date
2010-05
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Control of HIV-1 replication following nonsterilizing HIV-1 vaccination could be achieved by vaccine-elicited CD8(+) T-cell-mediated antiviral activity. To date, neither the functional nor the phenotypic profiles of CD8(+) T cells capable of this activity are clearly understood; consequently, little is known regarding the ability of vaccine strategies to elicit them. We used multiparameter flow cytometry and viable cell sorts from phenotypically defined CD8(+) T-cell subsets in combination with a highly standardized virus inhibition assay to evaluate CD8(+) T-cell-mediated inhibition of viral replication. Here we show that vaccination against HIV-1 Env and Gag-Pol by DNA priming followed by recombinant adenovirus type 5 (rAd5) boosting elicited CD8(+) T-cell-mediated antiviral activity against several viruses with either lab-adapted or transmitted virus envelopes. As it did for chronically infected virus controllers, this activity correlated with HIV-1-specific CD107a or macrophage inflammatory protein 1beta (MIP-1beta) expression from HIV-1-specific T cells. Moreover, for vaccinees or virus controllers, purified memory CD8(+) T cells from a wide range of differentiation stages were capable of significantly inhibiting virus replication. Our data define attributes of an antiviral CD8(+) T-cell response that may be optimized in the search for an efficacious HIV-1 vaccine.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Freel, SA, L Lamoreaux, PK Chattopadhyay, K Saunders, D Zarkowsky, RG Overman, C Ochsenbauer, TG Edmonds, et al. (2010). Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination. Journal of virology, 84(10). pp. 4998–5006. 10.1128/jvi.00138-10 Retrieved from https://hdl.handle.net/10161/21997.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Stephanie Freel
Kevin O'Neil Saunders
Kevin O. Saunders, PhD, graduated from Davidson College in 2005 with a Bachelor of Science in biology. At Davidson College, he trained in the laboratory of Karen Hales, PhD, identifying the genetic basis of infertility. Saunders completed his doctoral research on CD8+ T cell immunity against HIV-1 infection with Georgia Tomaras, PhD, at Duke University in 2010. He subsequently trained as a postdoctoral fellow in the laboratories of Drs. Gary Nabel and John Mascola at the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) Vaccine Research Center.
In 2014, Saunders joined the faculty at the Duke Human Vaccine Institute as a medical instructor. In this role, he analyzed antibody responses in vaccinated macaques, which led to the identification of glycan-dependent HIV antibodies induced by vaccination. Dr. Saunders was appointed as a non-tenure track assistant professor of surgery and the director of the laboratory of protein expression in the Duke Human Vaccine Institute in 2015. He successfully transitioned to a tenure-track appointment in 2018 and was later promoted to the rank of associate professor in surgery in 2020. In 2022, Saunders became an associate professor with tenure. He rose to the rank of professor with tenure in 2024 and was subsequently awarded the Norman L. Letvin, MD Professor in Immunology and Infectious Diseases Research in Surgery and the Duke Human Vaccine Institute distinguished professorship. Saunders previously served as DHVI's associate director of research, director or research, and currently serves as the associate director for DHVI. Additionally, Saunders serves as the faculty chairperson for DHVI's Diversity, Equity, and Inclusion Committee.
Saunders has given invited lectures at international conferences such as HIVR4P and the Keystone Symposia for HIV Vaccines. He has authored book chapters and numerous journal articles and holds patents on vaccine design concepts and antiviral antibodies. As a faculty member at Duke, Saunders has received the Duke Human Vaccine Institute Outstanding Leadership Award and the Norman Letvin Center For HIV/AIDS Vaccine Immunology and Immunogen Discovery Outstanding Investigator Award, Ruth and A. Morris Williams Faculty Research Prize, and the Duke Medical Alumni Emerging Leader Award. His current research interests include vaccine and antibody development to combat HIV-1, coronavirus, and other emerging viral infections.
About the Saunders Laboratory
The Saunders laboratory aims to understand the immunology of broadly protective antibodies and the molecular biology of their interaction with viral glycoprotein. The laboratory utilizes single B cell PCR, bulk B cell sequencing, and antigen-specific next-generation sequencing to probe the antibody repertoire during natural infection and after vaccination. The lab's overall goal is to develop protective antibody-based vaccines; therefore, the laboratory is divided into two sections–Immunoprofiling and Vaccine/Therapeutics design. They employ a reverse vaccinology approach to vaccine design where they study broadly protective antibodies in order to design vaccines that elicit such antibodies. To elicit broadly protective antibody responses, the Saunders laboratory utilizes epitope-focused nanoparticle vaccines. While eliciting broad protection is their overall goal, they are also interested in the immunologic mechanisms that make the vaccines successful.
Anti-glycan HIV-1 antibody biology. Their research premise is that vaccine-elicited antibodies will broadly neutralize HIV-1 if they can bind directly to the host glycans on Env. However, Env glycans are poorly immunogenic and require specific targeting by a vaccine immunogen to elicit an antibody response. Using this technique they identified two monoclonal antibodies from HIV Env vaccinated macaques called DH501 and DH502 that bind directly to mannose glycans and to HIV-1 envelope (Env). They have characterized these antibodies using glycan immunoassays, antibody engineering, and x-ray crystallography to define the mechanisms of Env-glycan interaction by these antibodies. Glycan-reactive HIV antibodies have mostly been found in the repertoire as IgG2 and IgM isotypes—similar to known natural glycan antibodies. Therefore they are examining whether vaccines mobilize antibodies from the natural glycan pool that affinity mature to interact with HIV-1 envelope. During this work, they discovered that Man9GlcNAc2 is the glycan preferred by early precursors in broadly neutralizing antibody lineages. They translated this finding into a vaccine design strategy that they have termed “glycan learning.” This approach modifies the number of glycans and type of glycosylation of HIV-1 Env immunogens to be optimal for engagement of the precursor antibody. The Env glycosylation sites and glycan type are then modified on subsequent Env immunogens to select antibodies that are maturing towards a broadly neutralizing phenotype. They have developed cell culture procedures and purification strategies combined with mass spectrometry analyses to create Env immunogens with specific glycosylation profiles. While the overall goal is to elicit protective neutralizing antibodies in vivo, they use these Env antigens in vitro to investigate the biology of B cell receptor engagement.
HIV-1 Sequential vaccine design. The discovery of lineages of broadly neutralizing antibodies in HIV-infected individuals has provided templates for vaccine design. Utilizing viral sequences from individuals that make broadly neutralizing antibodies, we further engineer the viral protein to preferentially bind the desired type of antibody. The Saunders lab partners heavily with structural biologists and bioinformaticians to design optimized vaccine immunogens for in vitro and preclinical testing. They are investigating the hypothesis that broadly neutralizing antibodies can be engaged with envelope immunogens specifically designed to target them, and that engineered envelopes can select for the broadly neutralizing antibody precursors to develop into a broadly neutralizing antibody. They examine antibody responses in vaccinated humanized mice and monkeys to discern if the vaccine elicits antibodies that are similar to the known human broadly neutralizing antibody targets. Vaccines that are effective in animal models are translated for manufacturing and evaluation in Phase I clinical trials.
Pancoronavirus vaccine development. During the COVID-19 pandemic, the Saunders lab and DHVI as a whole worked to isolate broadly neutralizing antibodies against SARS-CoV-2 and related viruses. These antibodies then served as a template for the development of receptor binding domain nanoparticle vaccines we call RBD-scNP. These vaccines protected monkeys and mice from SARS-CoV-2 and animal coronaviruses. This vaccine has been translated to GMP manufacturing and will be examined in a Phase I clinical trial. The lab continues to apply similar approaches against other targets on coronaviruses to ultimately generate protective immunity against most coronaviruses. The lab explores different delivery methods including slow-release technology and nucleoside-modified mRNA delivery.
Taken together, our research program is an interdisciplinary approach to understanding the molecular biology underlying antibody recognition of viral glycoproteins in order to produce protective vaccines.
Kent James Weinhold
The Weinhold Laboratory is currently focused on utilizing a comprehensive repertoire of highly standardized and formerly validated assay platforms to profile the human immune system in order to identify immunologic signatures that predict disease outcomes. These ongoing studies span a broad range of highly relevant clinical arenas, including: 1) cancer (non-small cell lung cancer, head and neck cancer, glioblastoma neoforme, ovarian cancer, and prostate cancer), 2) autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosis, multiple sclerosis, and myasthenia gravis), 3) pulmonary disease (idiopathic pulmonary fibrosis), 4) solid organ transplantation (lung, kidney, liver, and heart), and 5) inflammatory disorders.
Two of the areas that have been especially active over the past few years include the comprehensive immunologic profiling of cancer patients receiving so-called ‘immune checkpoint blockade’ therapies and the search for immune signatures in lung transplant recipients that track with resistance to CMV infection. The laboratory conducted immune monitoring studies associated with a Phase I trial of Ipilimumab (anti-CTLA-4) in a neoadjuvant setting for the treatment of non-small cell lung cancer (NSCLC). For this trial we extensively utilized several high parameter flow cytometry (PFC) platforms to follow activation, maturation, exhaustion, and proliferation patterns within CD4+ and CD8+ subsets of T-cells. We are also utilizing an intracellular cytokine staining (ICS) platform in efforts to detect anti-tumor associated antigen (TAA) responses by CD4+ and CD8+ T cells from peripheral blood mononuclear cells as well as lymphocytes infiltrating the patients’ tumor. These assays are designed to measure antigen-driven intracellular production of IFN-γ, TNF-α, and IL-2, as well as the degranulation marker CD107a. This strategy enables us to not only document individual cytokine responses, but to also assess (through Boolean gating) changes in relative polyfunctionality of the responses. We have also performed similar immune monitoring of a Phase II trial evaluating nivolumab (anti-PD-1) alone vs. combined nivolumamb + ipilimumab vs. avastin (bevacizamab) alone in patients with glioblastomas. In both studies, we are seeking to identify pharmacodynamics markers and immune correlates predictive of clinical responses. In completed studies of a cohort of lung transplant recipients, we identified specific polyfunctional signatures in CD4+ and CD8+ subsets against CMV pp65 and IE-1 antigens that tracked with resistance to CMV infection (manuscript in preparation). These findings now serve as the basis for a Phase I clinical trial to compare conventional 6-month chemoprophylaxis in lung transplant recipients versus a regimen dictated by the presence or absence of the predictive signatures. This trial is the principal component of a recently awarded Clinical Trials in Organ Transplantation or CTOT award made from the NIH to Duke (Scott Palmer, PI). Ongoing studies will test the hypothesis that these signatures that have been validated in lung transplant recipients will also predict resistance to CMV infection in the context of other solid organ transplants such as kidney, liver, and heart.Future studies will also attempt to identify predictive signatures for resistance to BK polyomavirus, the cause of graft threatening nephritis in kidney transplant recipients and cystitis in bone marrow transplant recipients.
Recent publications
Zidar, D.A., Mudd, J.C., Juchnowski, S., Lopes, J.P., Sparks, S., Park, S.S., Ishikawa, M., Osborne, R., Washam, J.B., Chan, C., Funderburg, N.T., Owoyele, A., Alaiti, M.A., Mayuga, M., Orringer, C., Costa, M.A., Simon, D.I., Tatsuoka, C., Califf, R.M., Newby, L.K., Lederman, M.M., and Weinhold, K.J. Altered maturation status and possible immune exhaustion of CD8 T lymphocytes in the peripheral blood of patients presenting with acute coronary syndromes. Arterioscler., Thromb., and Vasc. Biol. 36(2): 389-397, Feb. 2016 PMID: 26663396
Yi, J.S., Ready, N., Healy, P., Dumbauld, C., Berry, M., Shoemaker, D., Clarke, J., Crawford, J., Tong, B.C., Harpole, D., D’Amico, T.A., McSherry, F., Dunphy, F., McCall, S.J., Christensen, J.D., Wang, X, and Weinhold, K.J. Immune activation in early stage non-small cell lung cancer patients receiving neoadjuvant chemotherapy plus ipilimumab. Clin. Cancer Res. 23(24):7474-7482, 2017. PMCID: PMC5732888.
Reap, E., Suryadevera, C., Batuch, K., Sanchez-Perez, L., Archer, G., Schmittling, R., Norberg, P., Herndon II, J., Healy, P., Congdon, K., Gedeon, P., Campbell, O., Swartz, A., Riccione, K., Yi, J., Hossain-Ibrahim, M., Saraswathula, A., Nair, S., Anastasie, A., Broome, T., Weinhold, K.J., Desjardins, A., Vlahoviv, G., Mclendon, R., Firedman, H., Bigner, D., Fecci, P., Mitchell, D., and Sampson, J. Dendritic cells enhance polyfunctionality of adoptively transferred T cells which target cytomegalovirus in glioblastoma. Cancer Research 78(1):256-264, 2018. PMCID: PMC5754236.
Woroniecka, K., Chongsathidkiet, P., Rhodin, K., Kemeny, H., Dechant, C., Elsamadicy, A.A., Koyama, S., Jackson, C., Farber, H.S., Elsamadicy, A.A., Cui, X., Koyama, S., Jackson, C., Hansen, L., Bigner, D.D., Giles, A., Healy, P., Dranoff, G., Weinhold, K.J., Dunn, G.P., and Fecci, P.E. T cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. Sep 1;24(17)4175-4186, 2018. PMCID: PMC6081269.
Weinhold, K.J., Bukowski, J.F., Brennan, T.V., Noveck, R.J., Staats, J.S., Lin, L., Stempora, L., Hammond, C., Wouters, A., Mojcik, C.F., Cheng, J., Collinge, M., Jesson, M.I., Hazra, A., Biswas, P., Lan, S., Clark, J.D., and Hodge, J.A. Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin. Immunology 191:10-20, June 19, 2018. PMCID: PMC6036921.
Berger, M., Oyeyemi, D, Olurinde, M.O., Whitson, H.E., Weinhold, K.J., Woldorff, M.G., Lipsitz, L.A., Moretti, E., Giattino, C.M., Rpberts, K.C., Zhou, J., Bunning, T., Ferrandino, M., Scheri, R.P., Cooter, M., Chan, C., Cabeza, R., Browndyke, J.N., Murdoch, D.M., Devinney, M.J., Shaw, L.M., Cohen, H.J., Mathew, J.P., and the INTUIT Investigators. The INTUIT Study: Investigating neuroinflammation underlying postoperative cognitive dysfunction. J. American Geriatrics Society 67940;794-798, 2019. PMCID: PMC6688749.
Berger, M., Murdoch, D., Staats, J., Chan, C., Thomas J., Garrigues, G., Browndyke, J., Cooter, M., Quinones, Q., Matthew, J., and Weinhold, K.J. Flow cytometry characterization of cerebrospinal fluid monocytes in patients with postoperative cognitive dysfunction (POCD): A pilot study. Anesthesia & Analgesia May 3, 2019 doi: 10.1213/ANE. PMCID: PMC6800758.
Nyanhete, T.E., Frisbee, A., Bradley, T., Faison, W.J., Robins, E., Payne, T.,Freel, S.A., Sawant, S., Weinhold, K.J., Wiehe, K., Haynes, B.F., Ferrari, G., Li, Q-J., Moody, M.A., and Tomaras, G.D. HLA class II-restricted CD8+T cells in HIV-1 virus controllers. Nat. Sci. Rep. 9(1):10165, 2019; PMCID: PMC6629643.
Yi, J.S., Rosa-Bray, M., Staats, J., Zakroysky, P., Chan, C., Russo, M., Dumbauld, C., White, S., Gierman, T., Weinhold, K.J., and Guptill, J.T. Establishment of normative ranges of the healthy immune system with comprehensive polychromatic flow cytometry profiling. PLoS One 14(12):e0225512, Dec.11, 2019. PMCID: PMC6905525.
Healy, Z.R., Weinhold, K.J., and Murdoch D.M. Transcriptional profiling of CD8+ CMV-specific T cell functional subsets obtained using a method for isolating high-quality RNA from fixed and permeabilized cells. Frontiers in Immunology 11:1859, Sep. 2, 2020. PMCID: PMC7492549.
Zhang, T., Harrison, M.R., O’Donnell, P.H., Ajjai, A., Hahn, N.M., Appleman, L.J., Cetnar, J., Burke, J.M., Fleming, M., Miloswsky. M., Mortazavi, A., Shore, N., Sonapavde, G., Schmidt, E., Bitman, B., Munugalavadla, V., Izumi, P., Patel, P., Staats, J., Chan, C., Weinhold, K.J.*and George, D.J.,*senior co-authors. A randomized phase 2 trial of pembrolizumab versus pembrolizumab and acalabrutinib in patients with platinum-resistant metastatic urothelial cancer. Cancer Oct.15, 2020 126(20):4485-4497. PMCID: PMC7590121
Salama, A.K.S., Palta, M., Rushing, C.N., Selim, M.A., Linnet, K.N., Czito, B.G., Yoo, D.S., Hanks, B.A., Beasley, G.M., Mosca, P., Dumbauld, C., Steadman, K.N., Yi, J.S., Weinhold, K.J., Tyler, D.S., Lee, W.T., and Brizel, D.M. Ipilimumab and radiation in patients with high risk resected or regionally advanced melanoma. Clin. Cancer Res. 1 March, 2021 27(5):1287-1295. PMCID: PMC8759408.
Li, Y., Yi, J.S., Russo, M.., Rosa-Bray, M., Weinhold. K.J., and Guptill, J.T. Normative dataset for plasma cytokines in healthy human adults. Data Brief 2021 Feb. 9;35:106857. PMCID: PMC7900339
White, S., Quinn, J., Enzor, E., Staats, J., Mosier, S.M., Almarode, J., Denny, T.N., Weinhold, K., Ferrari, G., and Chan, C. FlowKit: A Python toolkit for integrated manual and automated cytometry analysis workflows. Frontiers in Immunology 12:768541,Nov. 5, 2021. PMCID: PMC8602902.
Sung, B-Y., Lin, Y-H., Shah, P.D., Bieler, J.G., Palmer, S., Weinhold, K.J., Chang, H-R., Huang, H., Avery, R.K., Schneck, J., and Chiu, Y-L. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J. Clin. Invest. 132(2):e140508, January 18, 2022. PMCID: PMC8759796.
Lusk, J.B., Quinones, Q.J., Staats, J.S., Weinhold, K.J., Grossi, P.M., Laskowitz, D.T., and James, M.L. Coupling hematoma evacuation with immune profiling for analysis of neuroinflammation after primary intracerebral hemorrhage: a pilot study. World Neurosurg. 2022 May;161:162-168 PMCID:PMID:35217228.
Brown, Landon C., Halabi, S., Somarelli, J., Humeniuk, M., Wu, Y., Oyekunle, T., Howard, L., Huang, J., Anand, M., Davies, C., Patel, P., Staats, J., Weinhold, K.J., Harrison, M.R., Zhang, T., George, D.J., and Armstrong, A.J. A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer and Prostatic Diseases 25(4):762-769, 2022. PMCID: PMC8933335.
Khatri, A., Todd, J.L., Kelly, F.L., Nagler, A., Ji, Z., Jain, V., Gregory, S..G., Weinhold, K.J., and Palmer, S.M. JAK-STAT activation in basal cells contributes to cytotoxic T-cell mediated basal cell death in human chronic lung allograft dusfunction. JCI Insight 8(6) March 22, 2023 PMCID:PMC pending.
Zaffiri, L., Messinger, M., Staats, J.S., Patel, P., Palmer, S.M., Weinhold, K.J., Snyder, L.D., and Luftig, M.A. Evaluation of host cellular responses to Epstein-Barr virus (EBV) in adult lung transplant recipients with EBV-associated diseases. J. Med. Virol. 95(4):e28724, 2023.
Guido Ferrari
The activities of the Ferrari Laboratory are based on both independent basic research and immune monitoring studies. The research revolves around three main areas of interest: class I-mediated cytotoxic CD8+ T cell responses, antibody-dependent cellular cytotoxicity (ADCC), gene expression in NK and T cellular subsets upon infection with HIV-1. With continuous funding over the last 11 years from the NIH and Bill & Melinda Gates Foundation along with many other productive collaborations within and outside of Duke, the Ferrari Lab has expanded its focus of research to include the ontogeny of HIV-1 specific immune responses that work by eliminating HIV-1 infected cells and how these can be induced by AIDS vaccine candidates.
Georgia Doris Tomaras
Dr. Georgia Tomaras is a tenured Professor of Surgery, Professor of Immunology, Professor of Molecular Genetics and Microbiology and is a Fellow of the American Academy of Microbiology (AAM) and a Fellow of the American Association for the Advancement of Science (AAAS). Dr. Tomaras is Co-Director of the Center for Human Systems Immunology (CHSI) Duke University and Director of the Duke Center for AIDS Research (CFAR). Her national and international leadership roles include: Executive Management Team (EMT) leader and mPI for the HIV Vaccine Trials Network (HVTN); Director of Lab Sciences (HVTN); and Chair of NIH Vaccine Research Center (VRC) Board of Scientific Counselors. Her prior leadership roles include serving as the Director of Research, Duke Human Vaccine Institute (DHVI); Director of the DHVI Training Program; Associate Director of DHVI Research; Co-Director of the Interdisciplinary Research Training Program in AIDS (IRTPA) Duke; Chair of the National Institutes of Health (NIH) AIDS Vaccine Research Subcommittee (AVRS), and Advisory Counsel member of the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID). Dr. Tomaras’ primary research focus is deciphering mechanisms of protective human immunity and identification of immune correlates of protection to further development of effective vaccines against infectious diseases.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.