Anharmonic lattice dynamics and superionic transition in AgCrSe2

dc.contributor.author

Ding, Jingxuan

dc.contributor.author

Niedziela, Jennifer L

dc.contributor.author

Bansal, Dipanshu

dc.contributor.author

Wang, Jiuling

dc.contributor.author

He, Xing

dc.contributor.author

May, Andrew F

dc.contributor.author

Ehlers, Georg

dc.contributor.author

Abernathy, Douglas L

dc.contributor.author

Said, Ayman

dc.contributor.author

Alatas, Ahmet

dc.contributor.author

Ren, Yang

dc.contributor.author

Arya, Gaurav

dc.contributor.author

Delaire, Olivier

dc.date.accessioned

2020-02-08T05:43:28Z

dc.date.available

2020-02-08T05:43:28Z

dc.date.updated

2020-02-08T05:43:19Z

dc.description.abstract

<jats:p>Intrinsically low lattice thermal conductivity (<jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi>κ</m:mi></m:mrow><m:mrow><m:mstyle mathvariant="italic"><m:mi>l</m:mi><m:mi>a</m:mi><m:mi>t</m:mi></m:mstyle></m:mrow></m:msub></m:math></jats:inline-formula>) in superionic conductors is of great interest for energy conversion applications in thermoelectrics. Yet, the complex atomic dynamics leading to superionicity and ultralow thermal conductivity remain poorly understood. Here, we report a comprehensive study of the lattice dynamics and superionic diffusion in <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi mathvariant="normal">A</m:mi><m:mi mathvariant="normal">g</m:mi><m:mi mathvariant="normal">C</m:mi><m:mi mathvariant="normal">r</m:mi><m:mi mathvariant="normal">S</m:mi><m:mi mathvariant="normal">e</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:math></jats:inline-formula> from energy- and momentum-resolved neutron and X-ray scattering techniques, combined with first-principles calculations. Our results settle unresolved questions about the lattice dynamics and thermal conduction mechanism in <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi mathvariant="normal">A</m:mi><m:mi mathvariant="normal">g</m:mi><m:mi mathvariant="normal">C</m:mi><m:mi mathvariant="normal">r</m:mi><m:mi mathvariant="normal">S</m:mi><m:mi mathvariant="normal">e</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:math></jats:inline-formula>. We find that the heat-carrying long-wavelength transverse acoustic (TA) phonons coexist with the ultrafast diffusion of Ag ions in the superionic phase, while the short-wavelength nondispersive TA phonons break down. Strong scattering of phonon quasiparticles by anharmonicity and Ag disorder are the origin of intrinsically low <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi>κ</m:mi></m:mrow><m:mrow><m:mstyle mathvariant="italic"><m:mi>l</m:mi><m:mi>a</m:mi><m:mi>t</m:mi></m:mstyle></m:mrow></m:msub></m:math></jats:inline-formula>. The breakdown of short-wavelength TA phonons is directly related to the Ag diffusion, with the vibrational spectral weight associated to Ag oscillations evolving into stochastic decaying fluctuations. Furthermore, the origin of fast ionic diffusion is shown to arise from extended flat basins in the energy landscape and collective hopping behavior facilitated by strong repulsion between Ag ions. These results provide fundamental insights into the complex atomic dynamics of superionic conductors.</jats:p>

dc.identifier.issn

0027-8424

dc.identifier.issn

1091-6490

dc.identifier.uri

https://hdl.handle.net/10161/20066

dc.language

en

dc.publisher

Proceedings of the National Academy of Sciences

dc.relation.ispartof

Proceedings of the National Academy of Sciences

dc.relation.isversionof

10.1073/pnas.1913916117

dc.title

Anharmonic lattice dynamics and superionic transition in AgCrSe2

dc.type

Journal article

duke.contributor.orcid

Arya, Gaurav|0000-0002-5615-0521

duke.contributor.orcid

Delaire, Olivier|0000-0003-1230-2834

pubs.begin-page

201913916

pubs.end-page

201913916

pubs.organisational-group

Pratt School of Engineering

pubs.organisational-group

Duke

pubs.organisational-group

Chemistry

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Physics

pubs.organisational-group

Mechanical Engineering and Materials Science

pubs.publication-status

Published online

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019-13916RR_Merged_PDF-1.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format
Description:
Accepted version