Anharmonic lattice dynamics and superionic transition in AgCrSe2
dc.contributor.author | Ding, Jingxuan | |
dc.contributor.author | Niedziela, Jennifer L | |
dc.contributor.author | Bansal, Dipanshu | |
dc.contributor.author | Wang, Jiuling | |
dc.contributor.author | He, Xing | |
dc.contributor.author | May, Andrew F | |
dc.contributor.author | Ehlers, Georg | |
dc.contributor.author | Abernathy, Douglas L | |
dc.contributor.author | Said, Ayman | |
dc.contributor.author | Alatas, Ahmet | |
dc.contributor.author | Ren, Yang | |
dc.contributor.author | Arya, Gaurav | |
dc.contributor.author | Delaire, Olivier | |
dc.date.accessioned | 2020-02-08T05:43:28Z | |
dc.date.available | 2020-02-08T05:43:28Z | |
dc.date.updated | 2020-02-08T05:43:19Z | |
dc.description.abstract | <jats:p>Intrinsically low lattice thermal conductivity (<jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi>κ</m:mi></m:mrow><m:mrow><m:mstyle mathvariant="italic"><m:mi>l</m:mi><m:mi>a</m:mi><m:mi>t</m:mi></m:mstyle></m:mrow></m:msub></m:math></jats:inline-formula>) in superionic conductors is of great interest for energy conversion applications in thermoelectrics. Yet, the complex atomic dynamics leading to superionicity and ultralow thermal conductivity remain poorly understood. Here, we report a comprehensive study of the lattice dynamics and superionic diffusion in <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi mathvariant="normal">A</m:mi><m:mi mathvariant="normal">g</m:mi><m:mi mathvariant="normal">C</m:mi><m:mi mathvariant="normal">r</m:mi><m:mi mathvariant="normal">S</m:mi><m:mi mathvariant="normal">e</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:math></jats:inline-formula> from energy- and momentum-resolved neutron and X-ray scattering techniques, combined with first-principles calculations. Our results settle unresolved questions about the lattice dynamics and thermal conduction mechanism in <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi mathvariant="normal">A</m:mi><m:mi mathvariant="normal">g</m:mi><m:mi mathvariant="normal">C</m:mi><m:mi mathvariant="normal">r</m:mi><m:mi mathvariant="normal">S</m:mi><m:mi mathvariant="normal">e</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:math></jats:inline-formula>. We find that the heat-carrying long-wavelength transverse acoustic (TA) phonons coexist with the ultrafast diffusion of Ag ions in the superionic phase, while the short-wavelength nondispersive TA phonons break down. Strong scattering of phonon quasiparticles by anharmonicity and Ag disorder are the origin of intrinsically low <jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msub><m:mrow><m:mi>κ</m:mi></m:mrow><m:mrow><m:mstyle mathvariant="italic"><m:mi>l</m:mi><m:mi>a</m:mi><m:mi>t</m:mi></m:mstyle></m:mrow></m:msub></m:math></jats:inline-formula>. The breakdown of short-wavelength TA phonons is directly related to the Ag diffusion, with the vibrational spectral weight associated to Ag oscillations evolving into stochastic decaying fluctuations. Furthermore, the origin of fast ionic diffusion is shown to arise from extended flat basins in the energy landscape and collective hopping behavior facilitated by strong repulsion between Ag ions. These results provide fundamental insights into the complex atomic dynamics of superionic conductors.</jats:p> | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.issn | 1091-6490 | |
dc.identifier.uri | ||
dc.language | en | |
dc.publisher | Proceedings of the National Academy of Sciences | |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | |
dc.relation.isversionof | 10.1073/pnas.1913916117 | |
dc.title | Anharmonic lattice dynamics and superionic transition in AgCrSe2 | |
dc.type | Journal article | |
duke.contributor.orcid | Arya, Gaurav|0000-0002-5615-0521 | |
duke.contributor.orcid | Delaire, Olivier|0000-0003-1230-2834 | |
pubs.begin-page | 201913916 | |
pubs.end-page | 201913916 | |
pubs.organisational-group | Pratt School of Engineering | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Chemistry | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Physics | |
pubs.organisational-group | Mechanical Engineering and Materials Science | |
pubs.publication-status | Published online |
Files
Original bundle
- Name:
- 2019-13916RR_Merged_PDF-1.pdf
- Size:
- 3.69 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version