Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons.

Loading...
Thumbnail Image

Date

2017-09-20

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

40
views
23
downloads

Citation Stats

Abstract

Electrophysiological recordings in cortex in vivo have revealed a rich variety of dynamical regimes ranging from irregular asynchronous states to a diversity of synchronized states, depending on species, anesthesia, and external stimulation. The average population firing rate in these states is typically low. We study analytically and numerically a network of sparsely connected excitatory and inhibitory integrate-and-fire neurons in the inhibition-dominated, low firing rate regime. For sufficiently high values of the external input, the network exhibits an asynchronous low firing frequency state (L). Depending on synaptic time constants, we show that two scenarios may occur when external inputs are decreased: (1) the L state can destabilize through a Hopf bifucation as the external input is decreased, leading to synchronized oscillations spanning d δ to β frequencies; (2) the network can reach a bistable region, between the low firing frequency network state (L) and a quiescent one (Q). Adding an adaptation current to excitatory neurons leads to spontaneous alternations between L and Q states, similar to experimental observations on UP and DOWN states alternations.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/s41598-017-12033-y

Publication Info

Tartaglia, Elisa M, and Nicolas Brunel (2017). Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons. Scientific reports, 7(1). p. 11916. 10.1038/s41598-017-12033-y Retrieved from https://hdl.handle.net/10161/23349.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Brunel

Nicolas Brunel

Duke School of Medicine Distinguished Professor in Neuroscience

We use theoretical models of brain systems to investigate how they process and learn information from their inputs. Our current work focuses on the mechanisms of learning and memory, from the synapse to the network level, in collaboration with various experimental groups. Using methods from
statistical physics, we have shown recently that the synaptic
connectivity of a network that maximizes storage capacity reproduces
two key experimentally observed features: low connection probability
and strong overrepresentation of bidirectionnally connected pairs of
neurons. We have also inferred `synaptic plasticity rules' (a
mathematical description of how synaptic strength depends on the
activity of pre and post-synaptic neurons) from data, and shown that
networks endowed with a plasticity rule inferred from data have a
storage capacity that is close to the optimal bound.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.