Task-driven adaptive statistical compressive sensing of gaussian mixture models

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


A framework for adaptive and non-adaptive statistical compressive sensing is developed, where a statistical model replaces the standard sparsity model of classical compressive sensing. We propose within this framework optimal task-specific sensing protocols specifically and jointly designed for classification and reconstruction. A two-step adaptive sensing paradigm is developed, where online sensing is applied to detect the signal class in the first step, followed by a reconstruction step adapted to the detected class and the observed samples. The approach is based on information theory, here tailored for Gaussian mixture models (GMMs), where an information-theoretic objective relationship between the sensed signals and a representation of the specific task of interest is maximized. Experimental results using synthetic signals, Landsat satellite attributes, and natural images of different sizes and with different noise levels show the improvements achieved using the proposed framework when compared to more standard sensing protocols. The underlying formulation can be applied beyond GMMs, at the price of higher mathematical and computational complexity. © 1991-2012 IEEE.






Published Version (Please cite this version)


Publication Info

Duarte-Carvajalino, JM, G Yu, L Carin and G Sapiro (2013). Task-driven adaptive statistical compressive sensing of gaussian mixture models. IEEE Transactions on Signal Processing, 61(3). pp. 585–600. 10.1109/TSP.2012.2225054 Retrieved from https://hdl.handle.net/10161/8951.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Guillermo Sapiro

James B. Duke Distinguished Professor of Electrical and Computer Engineering

Guillermo Sapiro received his B.Sc. (summa cum laude), M.Sc., and Ph.D. from the Department of Electrical Engineering at the Technion, Israel Institute of Technology, in 1989, 1991, and 1993 respectively. After post-doctoral research at MIT, Dr. Sapiro became Member of Technical Staff at the research facilities of HP Labs in Palo Alto, California. He was with the Department of Electrical and Computer Engineering at the University of Minnesota, where he held the position of Distinguished McKnight University Professor and Vincentine Hermes-Luh Chair in Electrical and Computer Engineering. Currently he is the Edmund T. Pratt, Jr. School Professor with Duke University.

G. Sapiro works on theory and applications in computer vision, computer graphics, medical imaging, image analysis, and machine learning. He has authored and co-authored over 300 papers in these areas and has written a book published by Cambridge University Press, January 2001.

G. Sapiro was awarded the Gutwirth Scholarship for Special Excellence in Graduate Studies in 1991,  the Ollendorff Fellowship for Excellence in Vision and Image Understanding Work in 1992,  the Rothschild Fellowship for Post-Doctoral Studies in 1993, the Office of Naval Research Young Investigator Award in 1998,  the Presidential Early Career Awards for Scientist and Engineers (PECASE) in 1998, the National Science Foundation Career Award in 1999, and the National Security Science and Engineering Faculty Fellowship in 2010. He received the test of time award at ICCV 2011. He was elected to the American Academy of Arts and Sciences on 2018.

G. Sapiro is a Fellow of IEEE and SIAM.

G. Sapiro was the founding Editor-in-Chief of the SIAM Journal on Imaging Sciences.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.