Radiative corrections beyond the ultra relativistic limit in unpolarized ep elastic and Møller scatterings for the PRad Experiment at Jefferson Laboratory

Loading...
Thumbnail Image

Date

2015-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

150
views
150
downloads

Citation Stats

Abstract

© 2015, SIF, Springer-Verlag Berlin Heidelberg.The clear 7σ discrepancy between measurements of the proton charge radius from muonic hydrogen Lamb shifts and those from hydrogen Lamb shift and electron scattering lead to both intense theoretical and experimental efforts to understand and explain this difference. In this regard, a new experiment (PRad) based on unpolarized ep elastic scattering cross section measurements normalized to Møller scattering is underway at Jefferson Laboratory to extract the proton charge radius based on new proton electric form factor down to values of momentum transfer squared Q2, as low as 10−4 GeV/c)2. To reach the precision of the experiment in such a small Q2 region requires reliable knowledge of radiative corrections. In this paper, we present a complete calculation of radiative corrections for unpolarized elastic ep and Møller scatterings performed within a covariant formalism resulting in the set of explicit formulas beyond the ultra relativistic approximation (me2 ≪ Q2), and numerical results for the kinematics of the PRad experiment.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1140/epja/i2015-15001-8

Publication Info

Akushevich, I, H Gao, A Ilyichev and M Meziane (2015). Radiative corrections beyond the ultra relativistic limit in unpolarized ep elastic and Møller scatterings for the PRad Experiment at Jefferson Laboratory. European Physical Journal A, 51(1). 10.1140/epja/i2015-15001-8 Retrieved from https://hdl.handle.net/10161/14820.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Akushevich

Igor Akushevich

Research Professor in the Social Science Research Institute
Gao

Haiyan Gao

Henry W. Newson Distinguished Professor of Physics

Prof. Gao's research focuses on understanding the structure of the nucleon in terms of quark and gluon degrees of freedom of Quantum Chromodynamics (QCD), search for QCD exotics, and fundamental symmetry studies at low energy to search for new physics beyond the Standard Model of electroweak interactions. Most recently, her group's studies of the structure of the nucleon have been focusing on a precision measurement of the proton (see her group's 2019 Nature paper on this topic) and deuteron charge radii to elucidate on the proton and the deuteron charge radius puzzles, and on imaging the three-dimensional structure of the nucleon in momentum space through the extraction of transverse momentum dependent parton distribution functions (TMDs), employing polarized semi-inclusive deep inelastic scattering processes. The nucleon tomography provided by TMDs will uncover the rich QCD dynamics, and provide quantitative information about the quark orbital angular momentum contribution to the proton spin. TMDs will also provide information on fundamental quantities such as the tensor charge of the nucleon, a quantity not only important for testing lattice QCD predictions, but also important for searches of new physics beyond the Standard Model together with the next generation of nucleon electric dipole moment experiments. Her group is playing leading roles in the Solenoidal Large Intensity Device (SoLID) project at Jefferson Lab, a high profile program which will make major impact on TMD physics, proton mass puzzle through precision measurement of J/psi production near threshold, and search for new physics beyond the Standard Model using parity-violating deep inelastic scattering. Most of her work utilizes the novel experimental technique of scattering polarized electrons or photons from polarized gas targets. Her group has built a number of state-of-the-art polarized gas targets including H/D internal gas target and a high-pressure polarized 3He target for photon experiments using the High Intensity Gamma Source (HIGS) facility at the Duke Free Electron Laser Laboratory (DFELL). Her research is being carried out mostly at the Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, and the HIGS facility at DFELL.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.