Phase II trial of upfront bevacizumab and temozolomide for unresectable or multifocal glioblastoma.
Date
2013-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Patients with unresectable glioblastomas have a poor prognosis, with median survival of 6-10 months. We conducted a phase II trial of upfront 5-day temozolomide (TMZ) and bevacizumab (BV) in patients with newly diagnosed unresectable or multifocal glioblastoma. Patients received up to four cycles of TMZ at 200 mg/m(2) on days 1-5, and BV at 10 mg/kg on days 1 and 15 of a 28-day cycle. Brain magnetic resonance imaging (MRI) was performed monthly. Therapy was continued as long as there was no tumor progression, grade 4 nonhematologic toxicity, or recurrent grade 4 hematologic toxicity after dose reduction. The primary end point was best tumor response as measured on MRI. Forty-one patients were accrued over 12 months; 39 had a full set of MRI scans available for evaluation. Assessment for best radiographic responses was as follows: partial responses in 24.4%, stable disease in 68.3%, and progressive disease in 2.4%. Treatment-related toxicities included seven grade 4 toxicities and one grade 5 toxicity (myocardial infarction). From this study, it was concluded that an upfront regimen of TMZ and BV for unresectable glioblastoma was well tolerated and provided a significant level of disease stabilization. Therapeutic toxicities were consistent with those seen in the adjuvant setting using these agents. The upfront approach to treatment of glioblastoma in the unresectable population warrants further investigation in randomized controlled phase III trials.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Lou, Emil, Katherine B Peters, Ashley L Sumrall, Annick Desjardins, David A Reardon, Eric S Lipp, James E Herndon, April Coan, et al. (2013). Phase II trial of upfront bevacizumab and temozolomide for unresectable or multifocal glioblastoma. Cancer Med, 2(2). pp. 185–195. 10.1002/cam4.58 Retrieved from https://hdl.handle.net/10161/16113.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Katherine Barnett Peters
Katy Peters, MD, PhD, FAAN is a professor of neurology and neurosurgery at the Preston Robert Tisch Brain Tumor Center (PRTBTC) at Duke. Her academic medical career started at Stanford University School of Medicine, receiving an MD and Ph.D. in Cancer Biology. After completing a neurology residency at Johns Hopkins University and a fellowship in cognitive neurosciences, Katy joined the PRTBTC as a neuro-oncology fellow. In 2009, she became a faculty member at PRTBTC. With a fantastic team of nursing and advanced practice providers, she actively sees and cares for patients with primary brain tumors. Her research interests include supportive care for brain cancer patients, cognitive dysfunction in cancer patients, and physical function and activity of brain cancer patients. While she runs clinical trials to treat primary brain tumors, her key interest is on clinical trials that focus on improving brain tumor patients' quality of life and cognition. In 2019, the PRTBTC designated her as the Director of Supportive Care, thus furthering the PRTBTC and her committee to better the quality of life for brain tumor patients. She is active in teaching medical school students, residents, fellows, and advanced practice providers and is the Program Director of the PRTBRC neuro-oncology fellowship. She is board certified by the American Board of Psychiatry and Neurology and the United Council of Neurologic Subspecialties for neuro-oncology.
Annick Desjardins
James Emmett Herndon
Current research interests have application to the design and analysis of cancer clinical trials. Specifically, interests include the use of time-dependent covariables within survival models, the design of phase II cancer clinical trials which minimize some of the logistical problems associated with their conduct, and the analysis of longitudinal studies with informative censoring (in particular, quality of life studies of patients with advanced cancer).
Henry Seth Friedman
Overview: Our laboratory is pursuing a comprehensive analysis of the biology and therapy of adult and childhood central nervous system malignancies, particularly high-grade medulloblastoma, glioma, and ependymoma.
Laboratory Studies: Active programs, using human adult and pediatric CNS tumor continuous cell lines, transplantable xenografts growing subcutaneously and intracranially in athymic nude mice and rats, and as well as in the subarachnoid space of the athymic nude rats, and patients tumor specimens, are defining:
1) the chemotherapeutic profile of medulloblastoma, adult and childhood glioma and ependymoma
2) mechanisms of resistance to classical bifunctional alkylators, nitrosoureas and methylators operational in malignant glioma and medulloblastoma, particularly DNA adduct and crosslink repair, O6-alkylguanine-DNA alkyltransferase elevation and DNA mismatch repair deficiency.
3) modulations designed to over come or circumvent specific mechanisms of resistance
4) the activity of signal pathway inhibitors of EGFR, m-tor and other targets
5) the therapeutic advantages of intrathecal and intratumoral drug delivery in the treatment of neoplastic meningitis and intracranial malignancies, respectively.
The results of the therapeutic studies to date have demonstrated the marked activity of alkylating agents, particularly melphalan and cyclophosphamide and the role of glutathione, AGT glutathione-S-transferase, abnormal drug transport and alterations in formation and repair of DNA-DNA crosslinks in modulating cytotoxicity of these agents. Modulations shown to be effective in enhancing alkylator activity/reversing alkylator resistance include BSO-mediated glutathione depletion, inhibition of DNA-DNA crosslink repair and inhibition of 06-alkylguanine-DNA alkyltransferase by 06-benzylguanine. Recent studies have demonstrated profound activity of temozolomide, CPT-11 topotecan, irofulven, and karenitecin as well as the combination of CPT-11 or topotecan plus BCNU or temozolomide. Successful treatment of neoplastic meningitis in nude rats with intrathecal 4-hydroperoxycyclophosphamide, melphalan, temozolomide and busulfan, and intracranial glioma in nude rats with intratumoral temozolomide has also been demonstrated. More recent studies have revealed cyclophosphamide resistance secondary to DNA interstrand crosslink repair. Additional studies have shown that cyclophosphamide crosslinks are formed at the 1,3 N7 position, serving as the basis for construction of a defined crosslink in a plasmid vector to assay for crosslink repair and allowing demonstration of the lack of a role of nucleotide excision repair. Mismatch repair deficiency has been shown as a mechanism mediating acquired methylator (procarbazine and temozolomide) resistance in an adult glioblastoma xenograft.
Clinical Studies: Clinical investigations are designed to translate laboratory programs into successful treatment for adults and children with malignant brain tumors, particularly medulloblastoma. Clinical trials for adults include phase II trials of temozolomide, ZD1839 (Iressa), karenitecin, and temozolomide plus O6-BG as well as phase I trials of topotecan plus BCNU, CPT-11 plus temozolomide, and PTK787 ± temozolomide or CCNU. Studies are in progress in children evaluating the activity CPT-11 plus temozolomide, intrathecal busulfan and cyclophosphamide/melphalan or cyclophosphamide/busulfan plus autologous bone marrow support . Extension of these studies to a larger cohort of patients is being performed nationally under the auspices of the Pediatric Brain Tumor Consortium (Henry S. Friedman -- Head of New Agents Committee).
Future studies will address the role of agents designed to decrease repair of interstrand crosslinks when given in combination with alkylating agents, as well as newer signal pathway inhibitors such as RAD001, PKI166, and DB-67.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.