Computational crystallization.

Loading...
Thumbnail Image

Date

2016-07-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

159
views
126
downloads

Citation Stats

Abstract

Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.abb.2016.01.004

Publication Info

Altan, Irem, Patrick Charbonneau and Edward H Snell (2016). Computational crystallization. Arch Biochem Biophys, 602. pp. 12–20. 10.1016/j.abb.2016.01.004 Retrieved from https://hdl.handle.net/10161/15339.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry

Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.