Adjunctive β2-agonists reverse neuromuscular involvement in murine Pompe disease.
Date
2013-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Pompe disease has resisted enzyme replacement therapy with acid α-glucosidase (GAA), which has been attributed to inefficient cation-independent mannose-6-phosphate receptor (CI-MPR) mediated uptake. We evaluated β2-agonist drugs, which increased CI-MPR expression in GAA knockout (KO) mice. Clenbuterol along with a low-dose adeno-associated virus vector increased Rotarod latency by 75% at 4 wk, in comparison with vector alone (P<2×10(-5)). Glycogen content was lower in skeletal muscles, including soleus (P<0.01), extensor digitorum longus (EDL; P<0.001), and tibialis anterior (P<0.05) following combination therapy, in comparison with vector alone. Glycogen remained elevated in the muscles following clenbuterol alone, indicating an adjunctive effect with gene therapy. Elderly GAA-KO mice treated with combination therapy demonstrated 2-fold increased wirehang latency, in comparison with vector or clenbuterol alone (P<0.001). The glycogen content of skeletal muscle decreased following combination therapy in elderly mice (P<0.05). Finally, CI-MPR-KO/GAA-KO mice did not respond to combination therapy, indicating that clenbuterol's effect depended on CI-MPR expression. In summary, adjunctive β2-agonist treatment increased CI-MPR expression and enhanced efficacy from gene therapy in Pompe disease, which has implications for other lysosomal storage disorders that involve primarily the brain.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Li, Songtao, Baodong Sun, Mats I Nilsson, Andrew Bird, Mark A Tarnopolsky, Beth L Thurberg, Deeksha Bali, Dwight D Koeberl, et al. (2013). Adjunctive β2-agonists reverse neuromuscular involvement in murine Pompe disease. FASEB J, 27(1). pp. 34–44. 10.1096/fj.12-207472 Retrieved from https://hdl.handle.net/10161/10805.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Baodong Sun
My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.
Deeksha Sarihyan Bali
1)Development of new non-invasive laboratory diagnostic methods using enzymology and molecular diagnostic techniques for Glycogen Storage Diseases (GSDs) and Lysosomal Storage Diseases (LSDs) like Pompe, Fabry, Gaucher, MPS - for early diagnosis and treatment modalities. Exploration of new high throughput diagnostic platforms with an idea of implementation into New born screening (NBS)of these diseases.
2)Clinical research studies associated with Pompe disease with a goal to improve the diagnosis, current therapies and patient care, with special emphasis on clinical development of Cross Reactive Immunologic Material (CRIM) diagnostic methods and association with underlying pathogenic GAA mutations and clinical correlations.
3) Clinical research studies involving other common LSDs (Fabry, MPSI,II,IVa and VI, Gaucher, Wolman disease and more) focusing on early diagnosis and new born screening.
4)Understanding the hepatocellular adenoma (HCA) and hepatocellular carcinomas (HCC) transformation in GSD I, using paired samples from resected adenomas and adjoining liver tissue. Experiments use SNP and expression microarray analysis, miRNA and CNV analysis in collaboration with other investigators.
5)Pursuing genotype-phenotype correlations for various clinical phenotypes of GSD IX, in order to better understand clinical heterogeneity. Severe phenotypes of GSD IX resulting in liver cirrhosis and Cardiac involvement are of special interest to us, especially their association with the underlying pathogenic mutations.
6)Research on Pompe/Mannose-6-phosphate receptor (M6PR300) double knock out mice to understand the role of M6PR in rhGAA uptake and glycogen clearance and also beta-agonist like Clenbuterol.
Dwight D. Koeberl
As a physician-scientist practicing clinical and biochemical genetics, I am highly motivated to seek improved therapy for my patients with inherited disorders of metabolism. The focus of our research has been the development of gene therapy with adeno-associated virus (AAV) vectors, most recently by genome editing with CRISPR/Cas9. We have developed gene therapy for inherited disorders of metabolism, especially glycogen storage disease (GSD) and phenylketonuria (PKU).
1) GSD Ia: Glucose-6-phosphatase (G6Pase) deficient animals provide models for developing new therapy for GSD Ia, although early mortality complicates research with both the murine and canine models of GSD Ia. We have prolonged the survival and reversed the biochemical abnormalities in G6Pase-knockout mice and dogs with GSD type Ia, following the administration of AAV8-pseudotyped AAV vectors encoding human G6Pase. More recently, we have performed genome editing to integrate a therapeutic transgene in a safe harbor locus for mice with GSD Ia, permanently correcting G6Pase deficiency in the GSD Ia liver. Finally, we have identified reduced autophagy as an underlying hepatocellular defect that might be treated with pro-autophagic drugs in GSD Ia.
2) GSD II/Pompe disease: Pompe disease is caused by the deficiency of acid-alpha-glucosidase (GAA) in muscle, resulting in the massive accumulation of lysosomal glycogen in striated muscle with accompanying weakness. While enzyme replacement has shown promise in infantile-onset Pompe disease patients, no curative therapy is available. We demonstrated that AAV vector-mediated gene therapy will likely overcome limitations of enzyme replacement therapy, including formation of anti-GAA antibodies and the need for frequent infusions. We demonstrated that liver-restricted expression with an AAV vector prevented antibody responses in GAA-knockout mice by inducing immune tolerance to human GAA. Antibody responses have complicated enzyme replacement therapy for Pompe disease and emphasized a potential advantage of gene therapy for this disorder. The strategy of administering low-dose gene therapy prior to initiation of enzyme replacement therapy, termed immunomodulatory gene therapy, prevented antibody formation and increased efficacy in Pompe disease mice. We are currently conducting a Phase I clinical trial of immunomodulatory gene therapy in adult patients with Pompe disease. Furthermore, we have developed drug therapy to increase the receptor-mediated uptake of GAA in muscle cells, which provides adjunctive therapy to more definitively treat Pompe disease.
3) PKU: In collaboration with researchers at OHSU, we performed an early gene therapy experiment that demonstrated long-term biochemical correction of PKU in mice with an AAV8 vector. PKU is a very significant disorder detected by newborn screening and currently inadequately treated by dietary therapy. Phenylalanine levels in mice were corrected in the blood, and elevated phenylalanine causes mental retardation and birth defects in children born to affected women, and gene therapy for PKU would address an unmet need for therapy in this disorder.
Currently we are developing methods for genome editing that will stably correct the enzyme deficiency in GSD Ia and in Pompe disease. Our long-term goal is to develop efficacious genome editing for glycogen storage diseases, which will allow us to treat these conditions early in life with long-term benefits.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.