The Berry Connection of the Ginzburg–Landau Vortices
dc.contributor.author | Nagy, Ákos | |
dc.date.accessioned | 2018-01-18T13:57:41Z | |
dc.date.available | 2018-01-18T13:57:41Z | |
dc.date.issued | 2017-02-01 | |
dc.description.abstract | © 2016, Springer-Verlag Berlin Heidelberg. We analyze 2-dimensional Ginzburg–Landau vortices at critical coupling, and establish asymptotic formulas for the tangent vectors of the vortex moduli space using theorems of Taubes and Bradlow. We then compute the corresponding Berry curvature and holonomy in the large area limit. | |
dc.identifier.eissn | 1432-0916 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.uri | ||
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.ispartof | Communications in Mathematical Physics | |
dc.relation.isversionof | 10.1007/s00220-016-2701-0 | |
dc.title | The Berry Connection of the Ginzburg–Landau Vortices | |
dc.type | Journal article | |
duke.contributor.orcid | Nagy, Ákos|0000-0002-1799-7631 | |
pubs.begin-page | 105 | |
pubs.end-page | 128 | |
pubs.issue | 1 | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.publication-status | Published | |
pubs.volume | 350 |