The Berry Connection of the Ginzburg–Landau Vortices

dc.contributor.author

Nagy, Ákos

dc.date.accessioned

2018-01-18T13:57:41Z

dc.date.available

2018-01-18T13:57:41Z

dc.date.issued

2017-02-01

dc.description.abstract

© 2016, Springer-Verlag Berlin Heidelberg. We analyze 2-dimensional Ginzburg–Landau vortices at critical coupling, and establish asymptotic formulas for the tangent vectors of the vortex moduli space using theorems of Taubes and Bradlow. We then compute the corresponding Berry curvature and holonomy in the large area limit.

dc.identifier.eissn

1432-0916

dc.identifier.issn

0010-3616

dc.identifier.uri

https://hdl.handle.net/10161/16001

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

Communications in Mathematical Physics

dc.relation.isversionof

10.1007/s00220-016-2701-0

dc.title

The Berry Connection of the Ginzburg–Landau Vortices

dc.type

Journal article

duke.contributor.orcid

Nagy, Ákos|0000-0002-1799-7631

pubs.begin-page

105

pubs.end-page

128

pubs.issue

1

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

350

Files