Bayesian quantile regression joint models: Inference and dynamic predictions.

Loading...
Thumbnail Image

Date

2018-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

83
views
54
downloads

Citation Stats

Abstract

In the traditional joint models of a longitudinal and time-to-event outcome, a linear mixed model assuming normal random errors is used to model the longitudinal process. However, in many circumstances, the normality assumption is violated and the linear mixed model is not an appropriate sub-model in the joint models. In addition, as the linear mixed model models the conditional mean of the longitudinal outcome, it is not appropriate if clinical interest lies in making inference or prediction on median, lower, or upper ends of the longitudinal process. To this end, quantile regression provides a flexible, distribution-free way to study covariate effects at different quantiles of the longitudinal outcome and it is robust not only to deviation from normality, but also to outlying observations. In this article, we present and advocate the linear quantile mixed model for the longitudinal process in the joint models framework. Our development is motivated by a large prospective study of Huntington's disease where primary clinical interest is in utilizing longitudinal motor scores and other early covariates to predict the risk of developing Huntington's disease. We develop a Bayesian method based on the location-scale representation of the asymmetric Laplace distribution, assess its performance through an extensive simulation study, and demonstrate how this linear quantile mixed model-based joint models approach can be used for making subject-specific dynamic predictions of survival probability.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1177/0962280218784757

Publication Info

Yang, Ming, Sheng Luo and Stacia DeSantis (2018). Bayesian quantile regression joint models: Inference and dynamic predictions. Statistical methods in medical research. p. 962280218784757. 10.1177/0962280218784757 Retrieved from https://hdl.handle.net/10161/19137.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Luo

Sheng Luo

Professor of Biostatistics & Bioinformatics

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.