Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development.
Date
2018-06
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wiehe, Kevin, Todd Bradley, R Ryan Meyerhoff, Connor Hart, Wilton B Williams, David Easterhoff, William J Faison, Thomas B Kepler, et al. (2018). Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell host & microbe, 23(6). pp. 759–765.e6. 10.1016/j.chom.2018.04.018 Retrieved from https://hdl.handle.net/10161/17301.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Kevin J Wiehe
Dr. Kevin Wiehe is the director of research, director of computational biology and co-director of the Quantitative Research Division at the Duke Human Vaccine Institute (DHVI). He has over 20 years of experience in the field of computational biology and has expertise in computational structural biology, computational genomics, and computational immunology.
For the past decade, he has applied his unique background to developing computational approaches for studying the B cell response in both the infection and vaccination settings. He has utilized his expertise in computational structural biology to structurally model and characterize HIV and influenza antibody recognition. Dr. Wiehe has utilized his expertise in computational genomics and computational immunology to develop software to analyze large scale next generation sequencing data of antibody repertoires as well as develop computational programs for estimating antibody mutation probabilities. Dr. Wiehe has shown that low probability antibody mutations can act as rate-limiting steps in the development of broadly neutralizing antibodies in HIV.
Through his PhD, postdoc work, and now his roles at DHVI, Dr. Wiehe always approaches the analysis and the scientific discovery process from a structural biology perspective. Supporting the Duke Center for HIV Structural Biology (DCHSB), Dr. Wiehe will conduct antibody sequence analysis for antibodies used in computational and molecular modeling analyses conducted.
Robert R Meyerhoff
Kevin O'Neil Saunders
Kevin O. Saunders, PhD, graduated from Davidson College in 2005 with a Bachelor of Science in biology. At Davidson College, he trained in the laboratory of Karen Hales, PhD, identifying the genetic basis of infertility. Saunders completed his doctoral research on CD8+ T cell immunity against HIV-1 infection with Georgia Tomaras, PhD, at Duke University in 2010. He subsequently trained as a postdoctoral fellow in the laboratories of Drs. Gary Nabel and John Mascola at the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) Vaccine Research Center.
In 2014, Saunders joined the faculty at the Duke Human Vaccine Institute as a medical instructor. In this role, he analyzed antibody responses in vaccinated macaques, which led to the identification of glycan-dependent HIV antibodies induced by vaccination. Dr. Saunders was appointed as a non-tenure track assistant professor of surgery and the director of the laboratory of protein expression in the Duke Human Vaccine Institute in 2015. He successfully transitioned to a tenure-track appointment in 2018 and was later promoted to the rank of associate professor in surgery in 2020. In 2022, Saunders became an associate professor with tenure. He rose to the rank of professor with tenure in 2024 and was subsequently awarded the Norman L. Letvin, MD Professor in Immunology and Infectious Diseases Research in Surgery and the Duke Human Vaccine Institute distinguished professorship. Saunders previously served as DHVI's associate director of research, director or research, and currently serves as the associate director for DHVI. Additionally, Saunders serves as the faculty chairperson for DHVI's Diversity, Equity, and Inclusion Committee.
Saunders has given invited lectures at international conferences such as HIVR4P and the Keystone Symposia for HIV Vaccines. He has authored book chapters and numerous journal articles and holds patents on vaccine design concepts and antiviral antibodies. As a faculty member at Duke, Saunders has received the Duke Human Vaccine Institute Outstanding Leadership Award and the Norman Letvin Center For HIV/AIDS Vaccine Immunology and Immunogen Discovery Outstanding Investigator Award, Ruth and A. Morris Williams Faculty Research Prize, and the Duke Medical Alumni Emerging Leader Award. His current research interests include vaccine and antibody development to combat HIV-1, coronavirus, and other emerging viral infections.
About the Saunders Laboratory
The Saunders laboratory aims to understand the immunology of broadly protective antibodies and the molecular biology of their interaction with viral glycoprotein. The laboratory utilizes single B cell PCR, bulk B cell sequencing, and antigen-specific next-generation sequencing to probe the antibody repertoire during natural infection and after vaccination. The lab's overall goal is to develop protective antibody-based vaccines; therefore, the laboratory is divided into two sections–Immunoprofiling and Vaccine/Therapeutics design. They employ a reverse vaccinology approach to vaccine design where they study broadly protective antibodies in order to design vaccines that elicit such antibodies. To elicit broadly protective antibody responses, the Saunders laboratory utilizes epitope-focused nanoparticle vaccines. While eliciting broad protection is their overall goal, they are also interested in the immunologic mechanisms that make the vaccines successful.
Anti-glycan HIV-1 antibody biology. Their research premise is that vaccine-elicited antibodies will broadly neutralize HIV-1 if they can bind directly to the host glycans on Env. However, Env glycans are poorly immunogenic and require specific targeting by a vaccine immunogen to elicit an antibody response. Using this technique they identified two monoclonal antibodies from HIV Env vaccinated macaques called DH501 and DH502 that bind directly to mannose glycans and to HIV-1 envelope (Env). They have characterized these antibodies using glycan immunoassays, antibody engineering, and x-ray crystallography to define the mechanisms of Env-glycan interaction by these antibodies. Glycan-reactive HIV antibodies have mostly been found in the repertoire as IgG2 and IgM isotypes—similar to known natural glycan antibodies. Therefore they are examining whether vaccines mobilize antibodies from the natural glycan pool that affinity mature to interact with HIV-1 envelope. During this work, they discovered that Man9GlcNAc2 is the glycan preferred by early precursors in broadly neutralizing antibody lineages. They translated this finding into a vaccine design strategy that they have termed “glycan learning.” This approach modifies the number of glycans and type of glycosylation of HIV-1 Env immunogens to be optimal for engagement of the precursor antibody. The Env glycosylation sites and glycan type are then modified on subsequent Env immunogens to select antibodies that are maturing towards a broadly neutralizing phenotype. They have developed cell culture procedures and purification strategies combined with mass spectrometry analyses to create Env immunogens with specific glycosylation profiles. While the overall goal is to elicit protective neutralizing antibodies in vivo, they use these Env antigens in vitro to investigate the biology of B cell receptor engagement.
HIV-1 Sequential vaccine design. The discovery of lineages of broadly neutralizing antibodies in HIV-infected individuals has provided templates for vaccine design. Utilizing viral sequences from individuals that make broadly neutralizing antibodies, we further engineer the viral protein to preferentially bind the desired type of antibody. The Saunders lab partners heavily with structural biologists and bioinformaticians to design optimized vaccine immunogens for in vitro and preclinical testing. They are investigating the hypothesis that broadly neutralizing antibodies can be engaged with envelope immunogens specifically designed to target them, and that engineered envelopes can select for the broadly neutralizing antibody precursors to develop into a broadly neutralizing antibody. They examine antibody responses in vaccinated humanized mice and monkeys to discern if the vaccine elicits antibodies that are similar to the known human broadly neutralizing antibody targets. Vaccines that are effective in animal models are translated for manufacturing and evaluation in Phase I clinical trials.
Pancoronavirus vaccine development. During the COVID-19 pandemic, the Saunders lab and DHVI as a whole worked to isolate broadly neutralizing antibodies against SARS-CoV-2 and related viruses. These antibodies then served as a template for the development of receptor binding domain nanoparticle vaccines we call RBD-scNP. These vaccines protected monkeys and mice from SARS-CoV-2 and animal coronaviruses. This vaccine has been translated to GMP manufacturing and will be examined in a Phase I clinical trial. The lab continues to apply similar approaches against other targets on coronaviruses to ultimately generate protective immunity against most coronaviruses. The lab explores different delivery methods including slow-release technology and nucleoside-modified mRNA delivery.
Taken together, our research program is an interdisciplinary approach to understanding the molecular biology underlying antibody recognition of viral glycoproteins in order to produce protective vaccines.
S. Munir Alam
Research Interests.
The Alam laboratory’s primary research is focused on understanding the biophysical properties of antigen-antibody binding and the molecular events of early B cell activation using the HIV-1 broadly neutralizing antibody (bnAb) lineage models. We are studying how HIV-1 Envelope proteins of varying affinities are sensed by B cells expressing HIV-1 bnAbs or their germline antigen receptors and initiate early signaling events for their activation. In the long-term these studies will facilitate design and pre-selection of immunogens for testing in animal models and accelerate HIV-1 vaccine development.
Current research include the following NIAID-funded projects
Antigen recognition and activation of B cell antigen receptors with the specificity of HIV-1 broadly neutralizing antibodies. This project involves elucidating the early events on the B cell surface following antigen (Ag) engagement of the B cell antigen receptor (BCR) and to provide an assessment of the in vivo potential of an Ag to drive B cell activation. We are performing biophysical interactions analyses and using high-resolution microscopy to define the physico-chemical properties of BCR-Ag interactions that govern signaling and activation thresholds for BCR triggering and the BCR endocytic function in antigen internalization. The overall objective of these studies is to bridge the quantitative biophysical and membrane dynamics measurements of Ag-BCR interactions to ex-vivo and in-vivo B cell activation. This NIAID-funded research is a collaboration with co-investigators Professor Michael Reth (University of Freiburg, Germany) and Dr. Laurent Verkoczy (San Diego Biomedical Research Institute, CA).
Immunogen Design for Induction of HIV gp41 Broadly Neutralizing Antibodies. This research project addresses the critical problem of vaccine induction of disfavored HIV-1 antibody lineages, like those that target the membrane proximal external region (MPER) of HIV Env gp41. This program combines structure and lineage-based vaccine development strategies to design immunogens that will induce bnAb lineages that are not polyreactive and therefore easier to induce. The overall objective of this program grant is to develop and test sequential immunogens that will initiate and induce HIV-1 bnAb lineages like the potent MPER bnAb DH511. Using a germline-targeting (GT) epitope scaffold design and a prime/boost strategy, we are testing induction of DH511-like bnAbs in knock-in (KI) mice models expressing the DH511 germline receptors. This P01 research program is in collaboration with Dr. William Schief (The Scripps Research Institute, CA), who leads the team that are designing germline targeting (GT)-scaffold prime and boost immunogens and Dr. Ming Tian at Harvard University who developed relevant knock-mice models for the study.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.