The Jamming point street-lamp in the world of granular media

dc.contributor.author

Coulais, C

dc.contributor.author

Behringer, RP

dc.contributor.author

Dauchot, O

dc.date.accessioned

2015-12-03T14:04:53Z

dc.description.abstract

The Jamming of soft spheres at zero temperature, the J-point, has been extensively studied both numerically and theoretically and can now be considered as a safe location in the space of models, where a street lamp has been lit up. However, a recent work by Ikeda et al, 2013 reveals that, in the Temperature/Packing fraction parameter space, experiments on colloids are actually rather far away from the scaling regime illuminated by this lamp. Is it that the J-point has little to say about real system? What about granular media? Such a-thermal, frictional, systems are a-priori even further away from the idealized case of thermal soft spheres. In the past ten years, we have systematically investigated horizontally shaken grains in the vicinity of the Jamming transition. We discuss the above issue in the light of very recent experimental results. First, we demonstrate that the contact network exhibits a remarkable dynamics, with strong heterogeneities, which are maximum at a packing fraction phi star, distinct and smaller than the packing fraction phi dagger, where the average number of contact per particle starts to increase. The two cross-overs converge at point J in the zero mechanical excitation limit. Second, a careful analysis of the dynamics on time scales ranging from a minute fraction of the vibration cycle to several thousands of cycles allows us to map the behaviors of this shaken granular system onto those observed for thermal soft spheres and demonstrate that some light of the J-point street-lamp indeed reaches the granular universe.

dc.format.extent

20 pages, 23 figures

dc.identifier

http://arxiv.org/abs/1305.0703v1

dc.identifier.uri

https://hdl.handle.net/10161/10949

dc.publisher

Royal Society of Chemistry (RSC)

dc.relation.ispartof

Soft Matter

dc.relation.isversionof

10.1039/C3SM51231B

dc.subject

cond-mat.soft

dc.subject

cond-mat.soft

dc.subject

cond-mat.stat-mech

dc.title

The Jamming point street-lamp in the world of granular media

dc.type

Journal article

pubs.author-url

http://arxiv.org/abs/1305.0703v1

pubs.begin-page

1519

pubs.end-page

1536

pubs.notes

Submitted to Soft Matter

pubs.organisational-group

Duke

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publisher-url

http://dx.doi.org/10.1039/C3SM51231B

pubs.volume

10

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c3sm51231b-corentin.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format