Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm.


Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.







Roberto Cabeza

Professor of Psychology and Neuroscience

My laboratory investigates the neural correlates of memory and cognition in young and older adults using fMRI. We have three main lines of research: First, we distinguish the neural correlates of various episodic memory processes. For example, we have compared encoding vs. retrieval, item vs. source memory, recall vs. recognition, true vs. false memory, and emotional vs. nonemotional memory. We are particularly interested in the contribution of prefrontal cortex (PFC) and medial temporal lobe (MTL) subregions and their interactions. Second, we investigate similarities and differences between the neural correlates of episodic memory and other memory and cognitive functions (working, semantic, implicit, and procedural memory; attention; perception, etc.). The main goal of this cross-functional approach is to understand the contributions of brain regions shared by different cognitive functions. Finally, in both episodic memory and cross-function studies, we also examine the effects of healthy and pathological aging. Regarding episodic memory, we have linked processes differentially affected by aging (e.g., item vs. source memory, recall vs. recognition) to the effects of aging on specific PFC and MTL subregions. Regarding cross-function comparisons, we identify age-related changes in activity that are common to various functions. For example, we have found an age-related increase in bilaterality that occurs for many functions (memory, attention, language, perception, and motor) and is associated with functional compensation.


Kevin S. LaBar

Professor of Psychology and Neuroscience

My research focuses on understanding how emotional events modulate cognitive processes in the human brain. We aim to identify brain regions that encode the emotional properties of sensory stimuli, and to show how these regions interact with neural systems supporting social cognition, executive control, and learning and memory. To achieve this goal, we use a variety of cognitive neuroscience techniques in human subject populations. These include psychophysiological monitoring, functional magnetic resonance imaging (fMRI), machine learning,  and behavioral studies in healthy adults as well as psychiatric patients. This integrative approach capitalizes on recent advances in the field and may lead to new insights into cognitive-emotional interactions in the brain.


David C. Rubin

Juanita M. Kreps Distinguished Professor of Psychology and Neuroscience

For .pdfs of all publications click here

My main research interest has been in long-term memory, especially for complex (or "real-world") stimuli. This work includes the study of autobiographical memory and oral traditions, as well as prose. I have also studied memory as it is more commonly done in experimental psychology laboratories using lists. In addition to this purely behavioral research, which I plan to continue, I work on memory in clinical populations with the aid of a National Institute of Mental Health grant to study PTSD and on the underlying neural basis of memory the aid of a National Institute of Aging grant to study autobiographical memory using fMRI.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.