Associations of potentially functional variants in IL-6, JAKs and STAT3 with gastric cancer risk in an eastern Chinese population.


The interleukin-6 (IL-6)/JAK/STAT3 signaling pathway plays a central role in inflammation-mediated cancers, including gastric cancer (GCa). We evaluated associations between 10 potentially functional single nucleotide polymorphisms (SNPs) of four essential genes in the pathway and GCa risk in a study of 1,125 GCa cases and 1,221 cancer-free controls. We found that a significant higher GCa risk was associated with IL-6 rs2069837G variant genotypes [adjusted odds ratios (OR) = 1.33; 95% confidence interval (CI) = 1.12-1.59 for AG + GG vs. AA)] and JAK1 rs2230587A variant genotypes (adjusted OR = 1.20; 95% CI = 1.02-1.43 for GA + AA vs. GG). We also found that a significant decreased GCa risk was associated with STAT3 rs1053004G variant genotypes (adjusted OR = 0.84; 95% CI = 0.71-0.99 for AG + GG vs. AA). The combined analysis of IL-6 rs2069837G and JAK1 rs2230587A variant risk genotypes revealed that individuals with one-or-two risk genotypes exhibited an increased risk for GCa (adjusted OR = 1.34; 95% CI = 1.13-1.59). Genotypes and mRNA expression correlation analysis using the data from the HapMap 3 database provided further support for the observed risk associations. Larger studies are warranted to validate these findings.





Published Version (Please cite this version)


Publication Info

Zhou, Fei, Lei Cheng, Li-Xin Qiu, Meng-Yun Wang, Jin Li, Meng-Hong Sun, Ya-Jun Yang, Jiu-Cun Wang, et al. (2016). Associations of potentially functional variants in IL-6, JAKs and STAT3 with gastric cancer risk in an eastern Chinese population. Oncotarget, 7(19). pp. 28112–28123. 10.18632/oncotarget.8492 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Qingyi Wei

Professor in Population Health Sciences

Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.

Area of Expertise: Epidemiology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.