Coupling and Decoupling to bound an approximating Markov Chain
Date
2017-07-27
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
This simple note lays out a few observations which are well known in many ways but may not have been said in quite this way before. The basic idea is that when comparing two different Markov chains it is useful to couple them is such a way that they agree as often as possible. We construct such a coupling and analyze it by a simple dominating chain which registers if the two processes agree or disagree. We find that this imagery is useful when thinking about such problems. We are particularly interested in comparing the invariant measures and long time averages of the processes. However, since the paths agree for long runs, it also provides estimates on various stopping times such as hitting or exit times. We also show that certain bounds are tight. Finally, we provide a simple application to a Markov Chain Monte Carlo algorithm and show numerically that the results of the paper show a good level of approximation at considerable speed up by using an approximating chain rather than the original sampling chain.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke

Jonathan Christopher Mattingly
Jonathan Christopher Mattingly grew up in Charlotte, NC, where he attended Irwin Avenue Elementary and Charlotte Country Day. He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University, where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a professor of mathematics and statistical science.
His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.
Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections.
He is the recipient of a Sloan Fellowship and a PECASE CAREER award. He is also a fellow of the IMS, the AMS, SIAM and AAAS. He was awarded the Defender of Freedom award by Common Cause for his work on Quantifying Gerrymandering.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.