Activated Coagulation Time and Hepcon Protamine Titration Device to Manage Unfractionated Heparin During Cardiopulmonary Bypass in a Hemophilia A Patient on Emicizumab.
Date
2021-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
In the perioperative management of patients with hemophilia A, emicizumab prevents the accurate measurement of common clotting assays, including the activated clotting time (ACT), which is essential for high-dose heparin monitoring during cardiopulmonary bypass surgery. The authors describe the successful perioperative management of a hemophilia A patient on maintenance emicizumab who, following a non-ST myocardial infarction, underwent cardiopulmonary bypass grafting surgery with heparin monitoring using both the ACT and heparin levels from the Hepcon protamine titration device. Postoperatively, the patient was transitioned to recombinant factor VIII replacement therapy. In hemophilia A patients on emicizumab who require heparin titration on cardiopulmonary bypass surgery, the ACT, combined with Hepcon heparin levels, may be used to complete the surgery successfully without excessive bleeding or morbidity.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Isaacs, James, Ian J Welsby, Jacob N Schroder and Oluwatoyosi A Onwuemene (2021). Activated Coagulation Time and Hepcon Protamine Titration Device to Manage Unfractionated Heparin During Cardiopulmonary Bypass in a Hemophilia A Patient on Emicizumab. Journal of cardiothoracic and vascular anesthesia, 35(11). pp. 3299–3302. 10.1053/j.jvca.2020.08.058 Retrieved from https://hdl.handle.net/10161/27009.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Ian James Welsby
As a practicing cardiothoracic anesthesiologist, I have contributed to the better understanding of the management and of perioperative thrombosis (particularly HIT). This has been as a Duke site PI for the Rare Thrombotic Diseases Consortium led by Dr T.L Ortel and a clinical collaborator with the basic and translational science approach to HIT led by Dr G Arepally. I have also championed novel approaches to dealing with perioperative HIT such as plasmaperesis.
Similarly, I have been a local leader in establishing management of transfusion approaches to major cardiac surgery including the novel introduction of autologous plateletpheresis to limit exposure to allogeneic platelet transfusions in this highly transfused population, identifying the transfusion requirements during thoracic aortic reconstruction and promoting use of a lower dose of rFVIIa use in this population, changing established clinical practice.
My research interests focus on perioperative transfusion and hematology concerns. Recently, Dr Kor (Mayo Clinic) and I received a multiple PI R-01 award to evaluate point-of-care/bedside washing of packed red blood cells to reduce perioperative lung injury. This novel repurposing of commonly available “cell-saver” technology is, for most surgical cases, the only practical means of delivering a washed product, and promises to be a critical advancement in perioperative transfusion medicine. I also have a longstanding interest in the rejuvenation of RBCs to normalize oxygen delivery capacity of transfused RBCs. Such a development will be of tremendous importance to transfusion practice, particularly for highly transfused populations and with current threats to blood banking inventory.
In summary, I have dedicated my research career to improving the outcome of patients undergoing cardiothoracic surgery, understanding perioperative coagulopathy, and optimizing transfusion practice.
Jacob Niall Schroder
Oluwatoyosi Adefunke Onwuemene
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.